Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylbor...Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylboronic acid(PBA)were synthesized,of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA.The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges.The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract.After reaching the lesions,the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release,while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside.The drugmicelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation.The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable,safe and flexible anti-infectious drug delivery systems.展开更多
Hepatocellular carcinoma(HCC)shows the highest morbidity among liver cancers which is characterized by genetic mutations in hepatocytes,leading to uncontrolled cell growth and proliferation.Current treatment include s...Hepatocellular carcinoma(HCC)shows the highest morbidity among liver cancers which is characterized by genetic mutations in hepatocytes,leading to uncontrolled cell growth and proliferation.Current treatment include surgery,chemotherapy and immunotherapy;however,chemotherapeutics,which focus on single-targeted drug therapy,are still associated with certain limitations and may affect the treatment outcomes.Natural products also show the anticancer effect of HCC and hypotoxicity,but overall low activity of natural products limits their further application.miRNAs canmodulate post-transcriptional functions of target genes.An increasing body of evidence has demonstrated that miRNAs are the key regulators in HCC by targeting different molecules in different signaling pathways.However,miRNAs are fragile and liable to catabolism by RNases in serum and other body fluids,and small molecules separated from natural products may have limited bioavailability.A chitosan based,targeted,sustained-release nanoparticle deliverymiR-128–3p agomir(NA-miR-128–3p)was developed in this work.This nanoparticle was prepared by pentasodium tripolyphosphate(TPP),chitosan hydrochloride and miR-128–3p agomir with target aptamer which was loaded into the chitosan nanoparticle by self-assembly.It can intervene in HCC progress by affecting AKT1 expression.Based on this,a novel,efficient,long-acting,multi-mechanism and low-dosage combination drug delivery strategy was proposed in thiswork and showed a prominent anti-tumor effect.NA-miR-128–3p combined with natural product Oroxin B significantly affected HCC progression by the interference with VEGF and PI3K-AKT pathways,better than using NA-miR-128–3p and Oroxin B alone.Taken together,this nanoparticle and combinative administration compensate for the shortcomings of the fragile RNA drugs and the low activity of natural products,with high prospects in HCC treatment.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
The prevalence of intrahepatic cholangiocarcinoma(ICC)is increasing globally.Despite advancements in comprehending this intricate malignancy and formulating novel therapeutic approaches over the past few decades,the p...The prevalence of intrahepatic cholangiocarcinoma(ICC)is increasing globally.Despite advancements in comprehending this intricate malignancy and formulating novel therapeutic approaches over the past few decades,the prognosis for ICC remains poor.Owing to the high degree of malignancy and insidious onset of ICC,numerous cases are detected at intermediate or advanced stages of the disease,hence eliminating the chance for surgical intervention.Moreover,because of the highly invasive characteristics of ICC,recurrence and metastasis postresection are prevalent,leading to a 5-year survival rate of only 20%-35%following surgery.In the past decade,different methods of treatment have been investigated,including transarterial chemoembolization,transarterial radioembolization,radiotherapy,systemic therapy,and combination therapies.For certain patients with advanced ICC,conversion treatment may be utilized to facilitate surgical resection and manage disease progression.This review summarizes the definition of downstaging conversion treatment and presents the clinical experience and evidence concerning conversion treatment for advanced ICC.展开更多
The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with...The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.展开更多
BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for ...BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.METHODS In this retrospective study,94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia,admitted to Yiwu Central Hospital between May 2022 and May 2023,were divided into a control group(inhalation combined general anesthesia)and a treatment group(dexmedetomidine-assisted intrave-nous-inhalation combined general anesthesia).Perioperative indicators,analgesic effect,preoperative and postoperative 24-hours blood pressure(BP)and heart rate(HR),stress indicators,immune function levels,and adverse reactions were com-pared between the two groups.RESULTS Baseline data,including age,hernia location,place of residence,weight,monthly income,education level,and underlying diseases,were not significantly different between the two groups,indicating comparability(P>0.05).No significant difference was found in operation time and anesthesia time between the two groups(P>0.05).However,the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group(P<0.05).Preoperatively,no significant differences were found in the visual analog scale(VAS)scores between the two groups(P>0.05).However,at 12,18,and 24 hours postoper-atively,the treatment group had significantly lower VAS scores than the control group(P<0.05).Although no significant differences in preoperative hemodynamic indicators were found between the two groups(P>0.05),both groups experienced some extent of changes in postoperative HR,diastolic BP(DBP),and systolic BP(SBP).Nevertheless,the treatment group showed smaller changes in HR,DBP,and SBP than the control group(P<0.05).Preoperative immune function indicators showed no significant differences between the two groups(P>0.05).However,postoperatively,the treatment group demonstrated higher levels of CD3+,CD4+,and CD4+/CD8+and lower levels of CD8+than the control group(P<0.05).The rates of adverse reactions were 6.38%and 23.40%in the treatment and control groups,respectively,revealing a significant difference(χ2=5.371,P=0.020).CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia.It ensures stable blood flow,improves postoperative analgesic effects,reduces postoperative pain intensity,alleviates stress response,improves immune function,facilitates anesthesia recovery,and enhances safety.展开更多
A crossbreeding program was established in 2019 to address the declining Crassostrea gigas harvests caused by Pacific Oyster Mortality Syndrome(POMS).As a part of the program,this study was performed to estimate the g...A crossbreeding program was established in 2019 to address the declining Crassostrea gigas harvests caused by Pacific Oyster Mortality Syndrome(POMS).As a part of the program,this study was performed to estimate the genetic structure underlying phenotypic variation.Fifteen complete diallel crossings of C.gigas and C.angulata,comprising 60 full-sib families,were used to evaluate the general combining ability(GCA)and specific combining ability(SCA),as well as genotype and environment interactions for shell height(SH),summer survival(SS),and thermal tolerance(TT)of reciprocal hybrids GA(C.gigas♀×C.angulata♂)and AG(C.angulata♀×C.gigas♂)grown in Rongcheng and Rushan,Shandong Province,China.The results suggested that heterosis of the reciprocal hybrids was evident for SH,SS,and TT.The hybrid GA had larger heterosis than AG in both testing environments,and can be a potential donor in the breeding program.The male C.gigas had better GCA for SH in Rongcheng,whereas male C.angulata was a good general combiner for SS and TT in both Rongcheng and Rushan.The estimate of SCA was much higher than GCA for SH and lower than GCA for TT.To harness both additive and non-additive genetic effects,combination breed-ing could be taken to develop hybrid varieties possessing both thermal tolerance and fast-growing traits.The positive correlations between SH and TT suggested that these traits could be improved simultaneously.The significant G×E interactions demonstrated the importance to undertake site-specific breeding programs in different environments.Overall,this study can provide essential information for developing crossbreeding strategies for the oyster farming industry.展开更多
Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks be...Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
OBJECTIVE:To reach consensus on the diagnostic criteria of syndrome of dampness obstruction in idiopathic membranous nephropathy(IMN)patients by literature research and expert investigation(interviews and a Delphi met...OBJECTIVE:To reach consensus on the diagnostic criteria of syndrome of dampness obstruction in idiopathic membranous nephropathy(IMN)patients by literature research and expert investigation(interviews and a Delphi method).METHODS:Our study was consistent with T/CACM 1336-2020.We searched the monographs and references published in the past 40 years(1983-2022),and established the diagnostic criteria pool of waterdampness syndrome and dampness-turbidity syndrome in Traditional Chinese Medicine(TCM)based on literature by using frequency statistics and correlation analysis.Expert investigation(interview method and two rounds of Delphi method)was used to form the diagnostic criteria of water-dampness syndrome and dampnessturbidity syndrome of idiopathic membranous nephropathy.Clinical diagnostic test research was carried out,and compared with“Diagnostic Criteria for dampness syndrome”(T/CACM 1454-2023)to evaluate the authenticity,reliability and clinical application value of the standard.RESULTS:A total of 122 relevant guides,standards,monographs and documents were included through searching books and Chinese databases.Four experts were interviewed and two rounds of delphi method(75 experts nationwide)were carried out.The experts'opinions are relatively concentrated and the differences are small.Based on the weight of each index,the diagnostic criteria indexes of water-dampness syndrome and dampness-turbidity syndrome were selected.After discussion by the core group members,the diagnostic model of"necessary symptoms and optional symptoms"was established,and the final diagnostic criteria of waterdampness syndrome and dampness-turbidity syndrome were established.One hundred and ninety-one inpatients and outpatients of Guangdong Provincial Hospital of Chinese Medicine from January 2021 to February 2023 were included in Diagnostic test study.There was no statistical difference in gender,age and course of disease(P>0.05).The sensitivity and specificity of the trial standard were 90.34%and 73.33%respectively,while the sensitivity and specificity of T/CACM 1454-2023 were 99.43%and 6.67%,respectively.CONCLUSIONS:The consensus-based diagnostic criteria for IMN can be widely incorporated in TCM.A further clinical study will be conducted to analyze the diagnosis value and cut-off score of our IMN criteria.展开更多
In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering...In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds.展开更多
Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the curr...Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes.展开更多
BACKGROUND Precision medicine is an emerging field that includes tumor-targeted delivery and tumor microenvironment.This review explores the synergistic potential of combining nano-drug delivery systems with low radia...BACKGROUND Precision medicine is an emerging field that includes tumor-targeted delivery and tumor microenvironment.This review explores the synergistic potential of combining nano-drug delivery systems with low radiation doses to achieve optimized therapeutic outcomes,particularly in the context of cancer treatment.Nanoparticle-based drug carriers offer precise and targeted delivery,enhancing the therapeutic index of anticancer agents.The use of lower radiation doses has become a focus in radiation oncology to minimize off-target effects on healthy tissues in palliation treatment with high-target volume lesions.AIM To conduct a bibliometric review of nanomedicine and glioblastoma(GBM),all relevant studies from the last two decades were included.METHODS The search strategy comprised the keywords“nanomedicine”and“glioblastoma”in the title and/or abstract.All English-language documents from 1 January 2000 to 31 December 2023 were considered for the analysis.R code(version 4.2.0)with R Studio(version 2022.12.0-353)and the Bibliometrix package(version 4.0.1)were used for the analysis.A total of 680 documents were collected.RESULTS We analyzed the bibliometric features of nanomedicine in glioma.With the limitations of the research,our analysis aims to highlight the increasing interest of researchers in the precision medicine field in GBM treatment and lead us to suggest further studies focusing on the association between nanomedicine and radiotherapy.CONCLUSION Due to the poor prognosis associated with GBM,new therapeutic approaches are necessary.There is an increasing interest in precision medicine,which includes nanomedicine and radiotherapy,for GBM treatment.This integration enhances the efficacy of targeted treatments and provides a promising avenue for reducing adverse effects,signifying a notable advancement in precision oncology.展开更多
Nanotechnology in cancer therapy has significantly advanced treatment precision,effectiveness,and safety,improving patient outcomes and personalized care.Engineered smart nanoparticles and cell-based therapies are des...Nanotechnology in cancer therapy has significantly advanced treatment precision,effectiveness,and safety,improving patient outcomes and personalized care.Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells,precisely sensing the tumor microenvironment(TME)and sparing normal cells.These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation,and they can also overcome therapy resistance and deliver multiple drugs simultaneously.Despite these benefits,challenges remain in patient-specific responses and regulatory approvals for cell-based or nanoparticle therapies.Cell-based drug delivery systems(DDSs)that primarily utilize the immune-recognition principle between ligands and receptors have shown promise in selectively targeting and destroying cancer cells.This review aims to provide a comprehensive overview of various nanoparticle and cell-based drug delivery system types used in cancer research.It covers approved and experimental nanoparticle therapies,including liposomes,micelles,protein-based and polymeric nanoparticles,as well as cell-based DDSs like macrophages,T-lymphocytes,dendritic cells,viruses,bacterial ghosts,minicells,SimCells,and outer membrane vesicles(OMVs).The review also explains the role of TME and its impact on developing smart DDSs in combination therapies and integrating nanoparticles with cell-based systems for targeting cancer cells.By detailing DDSs at different stages of development,from laboratory research to clinical trials and approved treatments,this review provides the latest insights and a collection of valuable citations of the innovative strategies that can be improved for the precise treatment of cancer.展开更多
Hepatocellular carcinoma(HCC)is a leading cause of cancer-related mortality worldwide,with advanced stages posing significant treatment challenges.Al-though hepatic arterial infusion chemotherapy(HAIC)has emerged as a...Hepatocellular carcinoma(HCC)is a leading cause of cancer-related mortality worldwide,with advanced stages posing significant treatment challenges.Al-though hepatic arterial infusion chemotherapy(HAIC)has emerged as a promising modality for treating advanced HCC,particularly in Asian clinical practice,its adoption in Western medicine remains limited due to a lack of large-scale randomized controlled trials.This editorial reviews and comments on the meta-analysis conducted by Zhou et al,which evaluates the efficacy and safety of HAIC and its combination strategies for advanced HCC.The authors performed a comprehensive meta-analysis of various clinical trials and cohort studies comparing HAIC and its combinations to other first-line treatments,such as sorafenib and transarterial chemoembolization(TACE).In this work,HAIC showed significantly better results regarding overall survival and progression-free survival compared to sorafenib or TACE alone and their combination.HAIC in combination with lenvatinib,ablation,programmed cell death 1 inhibitors,and radiotherapy further enhanced patient outcomes,indicating a synergistic effect.This editorial focuses on the critical role of multimodal treatment strategies in managing advanced HCC.It advocates for a paradigm shift towards integrated treatment approaches to enhance survival rates and improve the quality of life in patients with advanced HCC.展开更多
This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinom...This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinoma(HCC).This meta-analysis suggests that therapeutic combinations have greater efficacy than do standard treatments.The article highlights the key insights that have the potential to shift current clinical practice and enhance outcomes for patients with advanced HCC.Additionally,this article discusses further research that can be conducted to optimize these treatments and achieve personalized care for patients with HCC.展开更多
[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,...[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.展开更多
With the continuous escalation of modern war,soldiers need to transport more combat materials to the combat area.The limited load-bearing capacity of soldiers seriously restricts their carrying capacity and mobility.I...With the continuous escalation of modern war,soldiers need to transport more combat materials to the combat area.The limited load-bearing capacity of soldiers seriously restricts their carrying capacity and mobility.It is urgent to develop a power-assisted exoskeleton robot suitable for individual combat.In the past,most power-assisted exoskeleton robots were driven by motors.This driving method has an excellent power-assisted effect,but the endurance is often insufficient.In view of this shortcoming,this study designed an ankle exoskeleton robot based on an active-passive combined drive through simulation analysis of human motion.It used OpenSim software to simulate and verify that the addition of spring could achieve a good effect.At the same time,according to the gait characteristics of the human body,the gait planning of an exoskeleton robot was carried out.Afterwards,theoretical analysis explained that the cooperation among spring,motor and wearer could be realized in this gait.Finally,the assisting ability and driving coordination of the active-passive combination driven ankle exoskeleton robot were verified through experiments.展开更多
基金financial support from National Key Research and Development Program(2017YFD0501403)National Natural Science Foundation of China(Nos.81872819)+4 种基金Natural Science Foundation of Jiangsu Province(No.BK20171390)supported by Double First-Rate construction plan of China Pharmaceutical University(CPU2018GY26)the Project of State Key Laboratory of Natural Medicines,China Pharmaceutical University(No.SKLNMZZCX201816)the National Science and Technology Major Project(2017ZX09101001)the financial support from Development Funds for Priority Academic Programs in Jiangsu Higher Education Institutions-Young Talent Program。
文摘Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylboronic acid(PBA)were synthesized,of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA.The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges.The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract.After reaching the lesions,the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release,while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside.The drugmicelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation.The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable,safe and flexible anti-infectious drug delivery systems.
基金supported by the National Natural Science Foundation of China(Grant 82373828)the National Key Technologies R&D Program of China(2023YFD1400902).
文摘Hepatocellular carcinoma(HCC)shows the highest morbidity among liver cancers which is characterized by genetic mutations in hepatocytes,leading to uncontrolled cell growth and proliferation.Current treatment include surgery,chemotherapy and immunotherapy;however,chemotherapeutics,which focus on single-targeted drug therapy,are still associated with certain limitations and may affect the treatment outcomes.Natural products also show the anticancer effect of HCC and hypotoxicity,but overall low activity of natural products limits their further application.miRNAs canmodulate post-transcriptional functions of target genes.An increasing body of evidence has demonstrated that miRNAs are the key regulators in HCC by targeting different molecules in different signaling pathways.However,miRNAs are fragile and liable to catabolism by RNases in serum and other body fluids,and small molecules separated from natural products may have limited bioavailability.A chitosan based,targeted,sustained-release nanoparticle deliverymiR-128–3p agomir(NA-miR-128–3p)was developed in this work.This nanoparticle was prepared by pentasodium tripolyphosphate(TPP),chitosan hydrochloride and miR-128–3p agomir with target aptamer which was loaded into the chitosan nanoparticle by self-assembly.It can intervene in HCC progress by affecting AKT1 expression.Based on this,a novel,efficient,long-acting,multi-mechanism and low-dosage combination drug delivery strategy was proposed in thiswork and showed a prominent anti-tumor effect.NA-miR-128–3p combined with natural product Oroxin B significantly affected HCC progression by the interference with VEGF and PI3K-AKT pathways,better than using NA-miR-128–3p and Oroxin B alone.Taken together,this nanoparticle and combinative administration compensate for the shortcomings of the fragile RNA drugs and the low activity of natural products,with high prospects in HCC treatment.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
文摘The prevalence of intrahepatic cholangiocarcinoma(ICC)is increasing globally.Despite advancements in comprehending this intricate malignancy and formulating novel therapeutic approaches over the past few decades,the prognosis for ICC remains poor.Owing to the high degree of malignancy and insidious onset of ICC,numerous cases are detected at intermediate or advanced stages of the disease,hence eliminating the chance for surgical intervention.Moreover,because of the highly invasive characteristics of ICC,recurrence and metastasis postresection are prevalent,leading to a 5-year survival rate of only 20%-35%following surgery.In the past decade,different methods of treatment have been investigated,including transarterial chemoembolization,transarterial radioembolization,radiotherapy,systemic therapy,and combination therapies.For certain patients with advanced ICC,conversion treatment may be utilized to facilitate surgical resection and manage disease progression.This review summarizes the definition of downstaging conversion treatment and presents the clinical experience and evidence concerning conversion treatment for advanced ICC.
基金National Natural Science Foundation of China under Grant No.51578463。
文摘The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.
文摘BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.METHODS In this retrospective study,94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia,admitted to Yiwu Central Hospital between May 2022 and May 2023,were divided into a control group(inhalation combined general anesthesia)and a treatment group(dexmedetomidine-assisted intrave-nous-inhalation combined general anesthesia).Perioperative indicators,analgesic effect,preoperative and postoperative 24-hours blood pressure(BP)and heart rate(HR),stress indicators,immune function levels,and adverse reactions were com-pared between the two groups.RESULTS Baseline data,including age,hernia location,place of residence,weight,monthly income,education level,and underlying diseases,were not significantly different between the two groups,indicating comparability(P>0.05).No significant difference was found in operation time and anesthesia time between the two groups(P>0.05).However,the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group(P<0.05).Preoperatively,no significant differences were found in the visual analog scale(VAS)scores between the two groups(P>0.05).However,at 12,18,and 24 hours postoper-atively,the treatment group had significantly lower VAS scores than the control group(P<0.05).Although no significant differences in preoperative hemodynamic indicators were found between the two groups(P>0.05),both groups experienced some extent of changes in postoperative HR,diastolic BP(DBP),and systolic BP(SBP).Nevertheless,the treatment group showed smaller changes in HR,DBP,and SBP than the control group(P<0.05).Preoperative immune function indicators showed no significant differences between the two groups(P>0.05).However,postoperatively,the treatment group demonstrated higher levels of CD3+,CD4+,and CD4+/CD8+and lower levels of CD8+than the control group(P<0.05).The rates of adverse reactions were 6.38%and 23.40%in the treatment and control groups,respectively,revealing a significant difference(χ2=5.371,P=0.020).CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia.It ensures stable blood flow,improves postoperative analgesic effects,reduces postoperative pain intensity,alleviates stress response,improves immune function,facilitates anesthesia recovery,and enhances safety.
基金founded by the National Key R&D Program of China(No.2022YFD2400305)the Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province(Nos.2022LZGCQY010,2021LZGC027 and 2021ZLGX03)the China Agriculture Research System Project(No.CARS-49)。
文摘A crossbreeding program was established in 2019 to address the declining Crassostrea gigas harvests caused by Pacific Oyster Mortality Syndrome(POMS).As a part of the program,this study was performed to estimate the genetic structure underlying phenotypic variation.Fifteen complete diallel crossings of C.gigas and C.angulata,comprising 60 full-sib families,were used to evaluate the general combining ability(GCA)and specific combining ability(SCA),as well as genotype and environment interactions for shell height(SH),summer survival(SS),and thermal tolerance(TT)of reciprocal hybrids GA(C.gigas♀×C.angulata♂)and AG(C.angulata♀×C.gigas♂)grown in Rongcheng and Rushan,Shandong Province,China.The results suggested that heterosis of the reciprocal hybrids was evident for SH,SS,and TT.The hybrid GA had larger heterosis than AG in both testing environments,and can be a potential donor in the breeding program.The male C.gigas had better GCA for SH in Rongcheng,whereas male C.angulata was a good general combiner for SS and TT in both Rongcheng and Rushan.The estimate of SCA was much higher than GCA for SH and lower than GCA for TT.To harness both additive and non-additive genetic effects,combination breed-ing could be taken to develop hybrid varieties possessing both thermal tolerance and fast-growing traits.The positive correlations between SH and TT suggested that these traits could be improved simultaneously.The significant G×E interactions demonstrated the importance to undertake site-specific breeding programs in different environments.Overall,this study can provide essential information for developing crossbreeding strategies for the oyster farming industry.
基金financially supported by,the Fundamental Research Funds for the Central Universities(Grant No.2023QN1064)the China Postdoctoral Science Foundation(Grant No.2023M733772)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB847)。
文摘Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
基金the Special Project of State Key Laboratory of Dampness Syndrome of Chinese Medicine:Study on Criteria for Diagnosis of Dampness Syndrome of Idiopathic Membranous Nephropathy,Cohort Study on Pathogenesis and Material Basis of Dampness Syndrome of Idiopathic Membranous Nephropathy,Randomized Controlled Clinical Study of Sanqi Qushi Granule in Treatment of Membranous Nephropathy(No.SZ2021ZZ02,SZ2021ZZ09 and SZ2021ZZ36)the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund:Guangdong-Hong Kong-Macao Joint Lab(No.2020B1212030006)+2 种基金the Natural Science Foundation of Guangdong Province:Study on the Mechanism of Sanqi Qushi Prescription Delaying Podocellular Senescence in Membranous Nephropathy based on Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase-Stimulator of Interferon Genes-Nuclear Factor Kappa-B Signaling Pathway(No.2022A1515011628)the Guangzhou Science and Technology Plan Project:to Explore the Mechanism of Treating Membranous Nephropathy from the Perspective of Regulating Amino Acid Metabolism Disorder(No.2023A03J0746)Special Funding for Scientific and Technological Research on Traditional Chinese Medicine,Guangdong Provincial Hospital of Chinese Medicine:a Multimodular Machine Learning Prediction Model based on Pathological Image-transcriptomics and Traditional Chinese Medicine Syndromes was Used to Investigate the Prognostic Correlation of Long non-coding RNA Molecules in Nephropathy and the Intervention Mechanism of Sanqi Qushi Formula,to Investigate the Pathogenesis and Microbiological Mechanism of Dampness Syndrome of Membranous Nephropathy based on the Microecological Changes of Tongue Coating(No.YN2023MB02,YN2023MB10)。
文摘OBJECTIVE:To reach consensus on the diagnostic criteria of syndrome of dampness obstruction in idiopathic membranous nephropathy(IMN)patients by literature research and expert investigation(interviews and a Delphi method).METHODS:Our study was consistent with T/CACM 1336-2020.We searched the monographs and references published in the past 40 years(1983-2022),and established the diagnostic criteria pool of waterdampness syndrome and dampness-turbidity syndrome in Traditional Chinese Medicine(TCM)based on literature by using frequency statistics and correlation analysis.Expert investigation(interview method and two rounds of Delphi method)was used to form the diagnostic criteria of water-dampness syndrome and dampnessturbidity syndrome of idiopathic membranous nephropathy.Clinical diagnostic test research was carried out,and compared with“Diagnostic Criteria for dampness syndrome”(T/CACM 1454-2023)to evaluate the authenticity,reliability and clinical application value of the standard.RESULTS:A total of 122 relevant guides,standards,monographs and documents were included through searching books and Chinese databases.Four experts were interviewed and two rounds of delphi method(75 experts nationwide)were carried out.The experts'opinions are relatively concentrated and the differences are small.Based on the weight of each index,the diagnostic criteria indexes of water-dampness syndrome and dampness-turbidity syndrome were selected.After discussion by the core group members,the diagnostic model of"necessary symptoms and optional symptoms"was established,and the final diagnostic criteria of waterdampness syndrome and dampness-turbidity syndrome were established.One hundred and ninety-one inpatients and outpatients of Guangdong Provincial Hospital of Chinese Medicine from January 2021 to February 2023 were included in Diagnostic test study.There was no statistical difference in gender,age and course of disease(P>0.05).The sensitivity and specificity of the trial standard were 90.34%and 73.33%respectively,while the sensitivity and specificity of T/CACM 1454-2023 were 99.43%and 6.67%,respectively.CONCLUSIONS:The consensus-based diagnostic criteria for IMN can be widely incorporated in TCM.A further clinical study will be conducted to analyze the diagnosis value and cut-off score of our IMN criteria.
基金supported by the Science and Technology Development Plan Project of Jilin Provincial Department of Science and Technology (No.20220203112S)the Jilin Provincial Department of Education Science and Technology Research Project (No.JJKH20210039KJ)。
文摘In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds.
基金supported by Open Scientific Research Program of Military Logistics,No.BLB20J009(to YZhao).
文摘Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes.
文摘BACKGROUND Precision medicine is an emerging field that includes tumor-targeted delivery and tumor microenvironment.This review explores the synergistic potential of combining nano-drug delivery systems with low radiation doses to achieve optimized therapeutic outcomes,particularly in the context of cancer treatment.Nanoparticle-based drug carriers offer precise and targeted delivery,enhancing the therapeutic index of anticancer agents.The use of lower radiation doses has become a focus in radiation oncology to minimize off-target effects on healthy tissues in palliation treatment with high-target volume lesions.AIM To conduct a bibliometric review of nanomedicine and glioblastoma(GBM),all relevant studies from the last two decades were included.METHODS The search strategy comprised the keywords“nanomedicine”and“glioblastoma”in the title and/or abstract.All English-language documents from 1 January 2000 to 31 December 2023 were considered for the analysis.R code(version 4.2.0)with R Studio(version 2022.12.0-353)and the Bibliometrix package(version 4.0.1)were used for the analysis.A total of 680 documents were collected.RESULTS We analyzed the bibliometric features of nanomedicine in glioma.With the limitations of the research,our analysis aims to highlight the increasing interest of researchers in the precision medicine field in GBM treatment and lead us to suggest further studies focusing on the association between nanomedicine and radiotherapy.CONCLUSION Due to the poor prognosis associated with GBM,new therapeutic approaches are necessary.There is an increasing interest in precision medicine,which includes nanomedicine and radiotherapy,for GBM treatment.This integration enhances the efficacy of targeted treatments and provides a promising avenue for reducing adverse effects,signifying a notable advancement in precision oncology.
文摘Nanotechnology in cancer therapy has significantly advanced treatment precision,effectiveness,and safety,improving patient outcomes and personalized care.Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells,precisely sensing the tumor microenvironment(TME)and sparing normal cells.These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation,and they can also overcome therapy resistance and deliver multiple drugs simultaneously.Despite these benefits,challenges remain in patient-specific responses and regulatory approvals for cell-based or nanoparticle therapies.Cell-based drug delivery systems(DDSs)that primarily utilize the immune-recognition principle between ligands and receptors have shown promise in selectively targeting and destroying cancer cells.This review aims to provide a comprehensive overview of various nanoparticle and cell-based drug delivery system types used in cancer research.It covers approved and experimental nanoparticle therapies,including liposomes,micelles,protein-based and polymeric nanoparticles,as well as cell-based DDSs like macrophages,T-lymphocytes,dendritic cells,viruses,bacterial ghosts,minicells,SimCells,and outer membrane vesicles(OMVs).The review also explains the role of TME and its impact on developing smart DDSs in combination therapies and integrating nanoparticles with cell-based systems for targeting cancer cells.By detailing DDSs at different stages of development,from laboratory research to clinical trials and approved treatments,this review provides the latest insights and a collection of valuable citations of the innovative strategies that can be improved for the precise treatment of cancer.
文摘Hepatocellular carcinoma(HCC)is a leading cause of cancer-related mortality worldwide,with advanced stages posing significant treatment challenges.Al-though hepatic arterial infusion chemotherapy(HAIC)has emerged as a promising modality for treating advanced HCC,particularly in Asian clinical practice,its adoption in Western medicine remains limited due to a lack of large-scale randomized controlled trials.This editorial reviews and comments on the meta-analysis conducted by Zhou et al,which evaluates the efficacy and safety of HAIC and its combination strategies for advanced HCC.The authors performed a comprehensive meta-analysis of various clinical trials and cohort studies comparing HAIC and its combinations to other first-line treatments,such as sorafenib and transarterial chemoembolization(TACE).In this work,HAIC showed significantly better results regarding overall survival and progression-free survival compared to sorafenib or TACE alone and their combination.HAIC in combination with lenvatinib,ablation,programmed cell death 1 inhibitors,and radiotherapy further enhanced patient outcomes,indicating a synergistic effect.This editorial focuses on the critical role of multimodal treatment strategies in managing advanced HCC.It advocates for a paradigm shift towards integrated treatment approaches to enhance survival rates and improve the quality of life in patients with advanced HCC.
文摘This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinoma(HCC).This meta-analysis suggests that therapeutic combinations have greater efficacy than do standard treatments.The article highlights the key insights that have the potential to shift current clinical practice and enhance outcomes for patients with advanced HCC.Additionally,this article discusses further research that can be conducted to optimize these treatments and achieve personalized care for patients with HCC.
基金National Key Research and Development Program of China(2022YFF0707602)National Natural Science Foundation of China(62471097,62471115,62471101)National Natural Science Foundation of Sichuan(2025ZNSFSC0537)。
文摘[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.
基金the National Natural Science Foundation of China(No.52075264)。
文摘With the continuous escalation of modern war,soldiers need to transport more combat materials to the combat area.The limited load-bearing capacity of soldiers seriously restricts their carrying capacity and mobility.It is urgent to develop a power-assisted exoskeleton robot suitable for individual combat.In the past,most power-assisted exoskeleton robots were driven by motors.This driving method has an excellent power-assisted effect,but the endurance is often insufficient.In view of this shortcoming,this study designed an ankle exoskeleton robot based on an active-passive combined drive through simulation analysis of human motion.It used OpenSim software to simulate and verify that the addition of spring could achieve a good effect.At the same time,according to the gait characteristics of the human body,the gait planning of an exoskeleton robot was carried out.Afterwards,theoretical analysis explained that the cooperation among spring,motor and wearer could be realized in this gait.Finally,the assisting ability and driving coordination of the active-passive combination driven ankle exoskeleton robot were verified through experiments.