We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods...We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.展开更多
A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study.The key treatment involves using adjoint variable method in shape sensitiv...A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study.The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points,and in topology sensitivity analysis with respect to the artificial densities of sound absorption material.OpenMP tool in Fortran code is adopted to improve the efficiency of analysis.To consider the features and efficiencies of the two types of optimization methods,this study adopts a combined iteration scheme for the optimization process to investigate the simultaneous change of geometry shape and distribution of material to achieve better noise control.Numerical examples,such as sound barrier,simple tank,and BeTSSi submarine,are performed to validate the advantage of combined optimization in noise reduction,and to demonstrate the potential of the proposed method for engineering problems.展开更多
The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is int...The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is introduced. Compared with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems.展开更多
In order to determine the optimal structural parameters of a plastic centrifugal pump in the framework of an orthogonal-experiment approach,a numerical study of the related flow field has been performed using CFX.The ...In order to determine the optimal structural parameters of a plastic centrifugal pump in the framework of an orthogonal-experiment approach,a numerical study of the related flow field has been performed using CFX.The thickness S,outlet angleβ2,inlet angleβ1,wrap angle,and inlet diameter D1 of the splitter blades have been considered as the variable factors,using the shaft power and efficiency of the pump as evaluation indices.Through a parametric analysis,the relative importance of the influence of each structural parameter on each evaluation index has been obtained,leading to the following combinations:β119°,β235°,S 2 mm,wrap angle 154°,and D185 mm(corresponding to the maximum efficiency of 75.48%);β119°,β220°,S 6 mm,wrap angle 158°,and D181 mm(corresponding to the minimum shaft power of 75.48%).Moreover,the grey correlation method has been applied to re-optimize the shaft power and efficiency of the pump,leading to the following optimal combination:β119°,β215°,S 4 mm,D181 mm,and wrap angle 152°(corresponding to the maximum efficiency of 71.81%and minimum shaft power of 2.187 kW).展开更多
The application of green building technology can not only protect the environment in construction, achieve the purpose of ecological construction, improve the application level of green technology, but also effectivel...The application of green building technology can not only protect the environment in construction, achieve the purpose of ecological construction, improve the application level of green technology, but also effectively promote economic development. Green building technology first requires the use of environmental protection building materials, improve the utilization of resources, the application of green energy-saving construction technology, to achieve the effect of energy saving and emission reduction, green building technology is expected to achieve considerable ecological benefits. Next, the article discusses the optimization and combination of green building technology in architectural design.展开更多
The power sector is an important factor in ensuring the development of the national economy.Scientific simulation and prediction of power consumption help achieve the balance between power generation and power consump...The power sector is an important factor in ensuring the development of the national economy.Scientific simulation and prediction of power consumption help achieve the balance between power generation and power consumption.In this paper,a Multi-strategy Hybrid Coati Optimizer(MCOA)is used to optimize the parameters of the three-parameter combinatorial optimization model TDGM(1,1,r,ξ,Csz)to realize the simulation and prediction of China's daily electricity consumption.Firstly,a novel MCOA is proposed in this paper,by making the following improvements to the Coati Optimization Algorithm(COA):(ⅰ)Introduce improved circle chaotic mapping strategy.(ⅱ)Fusing Aquila Optimizer,to enhance MCOA's exploration capabilities.(ⅲ)Adopt an adaptive optimal neighborhood jitter learning strategy.Effectively improve MCOA escape from local optimal solutions.(ⅳ)Incorporating Differential Evolution to enhance the diversity of the population.Secondly,the superiority of the MCOA algorithm is verified by comparing it with the newly proposed algorithm,the improved optimiza-tion algorithm,and the hybrid algorithm on the CEC2019 and CEC2020 test sets.Finally,in this paper,MCOA is used to optimize the parameters of TDGM(1,1,r,ξ,Csz),and this model is applied to forecast the daily electricity consumption in China and compared with the predictions of 14 models,including seven intelligent algorithm-optimized TDGM(1,1,r,ξ,Csz),and seven forecasting models.The experimental results show that the error of the proposed method is minimized,which verifies the validity of the proposed method.展开更多
Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primari...Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primarily focuses on identifying the maximum tolerated dose(MTD),therapies involving targeted and immune agents facilitate the identifica-tion of an optimal biological dose combination(OBDC)by simultaneously evaluating both toxicity and efficacy.Cur-rently,most approaches to determining the OBDC in the literature are model-based and require complex model fittings,making them cumbersome and challenging to implement.To address these challenges,we developed a novel model-as-sisted approach called uTPI-Comb.This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy,which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials.Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations.展开更多
NP-hard combinational optimization problem is not solved very well until now. One enhanced ants system based on ants system is advanced after analysis of the deficiencies of existing ants systems. Some improvements ar...NP-hard combinational optimization problem is not solved very well until now. One enhanced ants system based on ants system is advanced after analysis of the deficiencies of existing ants systems. Some improvements are made in state transfer rule and local modification rule. Furthermore, the enhanced ants system can solve NP-hard combinational optimization problem with restraints and condition path. The successful application of TSP problem and transportation net problem indicates that the proposed system has stronger function and higher efficiency than the original system.展开更多
The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present ...The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present research on WTA is focused on models and algorithms. In the research on models of WTA, the static WTA models are mainly studied and the dynamic WTA models are not fully studied in deed. In the research on algorithms of WTA, the intelligent algorithms are often used to solve the WTA problem. The small scale of static WTA problems has been solved very well, however, the large scale of dynamic WTA problems has not been solved effectively so far. Finally, the characteristics of dynamic WTA are analyzed and directions for the future research on dynamic WTA are discussed.展开更多
A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression (SVMR) ensemble is proposed by resampling from given training...A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression (SVMR) ensemble is proposed by resampling from given training data sets repeatedly and aggregating several independent SVMRs, each of which is trained to use a replicated training set. After training, several independently trained SVMRs need to be aggregated in an appropriate combination manner. Generally, the linear weighting is usually used like expert weighting score in Boosting Regression and it is without optimization capacity. Three combination techniques are proposed, including simple arithmetic mean, linear least square error weighting and nonlinear hierarchical combining that uses another upper-layer SVMR to combine several lower-layer SVMRs. Finally, simulation experiments demonstrate the accuracy and validity of the presented algorithm.展开更多
The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base edit...The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.展开更多
Monitoring the dynamics of soil salinization is of great importance for agricultural production.This study selected Yucheng County,a typical county on the Huang-Huai-Hai Plain(HHHP)of China,as the study area and evalu...Monitoring the dynamics of soil salinization is of great importance for agricultural production.This study selected Yucheng County,a typical county on the Huang-Huai-Hai Plain(HHHP)of China,as the study area and evaluated the spatial and temporal variation of soil salinization.Three methods,consisting of principal component analysis(PCA)transformation,tasseled cap(TC)transformation,and optimal band combination(OBC),were used to extract information from an early Landsat multispectral scanner(MSS)image from 1984,and their advantages were compared.In addition,OBC was used on a thematic mapper(TM)image from 2009.An iteratively self-organizing data analysis algorithm was used together with prior knowledge of likely classifications to interpret the MSS and TM images for data classification.Finally,a transfer matrix method was used to assess the spatial and temporal variability of soil salinization and analyze the driving factors of soil salinization.Compared to PCA transformation and OBC,TC transformation was a more effective method for extracting soil salinization information from the MSS sensor.The results indicate that a soil area of approximately 298 km^2was affected by salinity in 1984 in Yucheng County,of which 5.40%,11.96%,and 12.75%were classified as being subject to slight,moderate,and severe salinization,respectively.In 2009,the saline area was reduced to only 146 km^2,of which 10.70%and 3.75%were characterized by slight to moderate salinization and no severe salinization,respectively.The saline land decreased at an average rate of 6 km^2per year.This decrease was probably a result of lower groundwater depth,increased organic fertilizer or crop straw in soil,changed land use type,and increased vegetation coverage.展开更多
The combination regimen of trastuzumab(Tras)plus Nab-paclitaxel(Nab)is recommended to treat HER2-positive(HER2+)cancers.However,they exert effects in different mechanisms:Tras need to stay on cell membranes,while Nab ...The combination regimen of trastuzumab(Tras)plus Nab-paclitaxel(Nab)is recommended to treat HER2-positive(HER2+)cancers.However,they exert effects in different mechanisms:Tras need to stay on cell membranes,while Nab need to be endocytosed,therefore the concurrent combination regimen may not be the best one in HER2+tumors treatment.Caveolin-1(Cav-1)is a key player in mediating their endocytosis and is associated with their efficacy,but few researches noticed the opposite effect of Cav-1 expression on the combination efficacy.Herein,we systematically studied the Cav-1 expression level on the combination efficacy and proposed an optimized and clinically feasible combination regimen for HER2+Cav-1 High tumor treatment.In the regimen,lovastatin(Lova)was introduced to modulate the Cav-1 expression and the results indicated that Lova could downregulate Cav-1 expression,increase Tras retention on cell membrane and enhance the in vitro cytotoxicity of Tras in HER2+Cav-1 High cells but not in HER2+Cav-1 Low cells.Therefore,by exchanging the dosing sequence of Nab and Tras,and by adding Lova at appropriate time points,the precise three-drug-sequential regimen(PTDS,Nab(D1)-Lova(D2)-Lova&Tras(D2+12 h))was established.Compared with the concurrent regimen,the PTDS regimen exhibited a higher in vitro cytotoxicity and a stronger tumor growth inhibition in HER2+Cav-1 High tumors,which might be a promising combination regimen for these patients in clinics.展开更多
Reconnaissance mission planning of multiple unmanned aerial vehicles(UAVs)under an adversarial environment is a discrete combinatorial optimization problem which is proved to be a non-deterministic polynomial(NP)-comp...Reconnaissance mission planning of multiple unmanned aerial vehicles(UAVs)under an adversarial environment is a discrete combinatorial optimization problem which is proved to be a non-deterministic polynomial(NP)-complete problem.The purpose of this study is to research intelligent multiUAVs reconnaissance mission planning and online re-planning algorithm under various constraints in mission areas.For numerous targets scattered in the wide area,a reconnaissance mission planning and re-planning system is established,which includes five modules,including intelligence analysis,sub-mission area division,mission sequence planning,path smoothing,and online re-planning.The intelligence analysis module depicts the attribute of targets and the heterogeneous characteristic of UAVs and computes the number of sub-mission areas on consideration of voyage distance constraints.In the sub-mission area division module,an improved K-means clustering algorithm is designed to divide the reconnaissance mission area into several sub-mission areas,and each sub-mission is detected by the UAV loaded with various detective sensors.To control reconnaissance cost,the sampling and iteration algorithms are proposed in the mission sequence planning module,which are utilized to solve the optimal or approximately optimal reconnaissance sequence.In the path smoothing module,the Dubins curve is applied to smooth the flight path,which assure the availability of the planned path.Furthermore,an online re-planning algorithm is designed for the uncertain factor that the UAV is damaged.Finally,reconnaissance planning and re-planning experiment results show that the algorithm proposed in this paper are effective and the algorithms designed for sequence planning have a great advantage in solving efficiency and optimality.展开更多
A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorith...A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.展开更多
Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swar...Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.展开更多
A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational i...A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational ice forecast system based on a com- bined optimal interpolation and nudging scheme. The scheme produces a modeled sea ice concentration at every time step, based on the difference between observational and forecast data and on the ratio of observational error to modeled error. The impact and the effectiveness of data assimilation are investigated. Significant improvements to predictions of sea ice extent were obtained through the assimilation of ice concentration, and minor improvements through the adjustment of the upper ocean properties. The assimilation of ice thickness data did not significantly improve predictions. Forecast experiments show that the forecast accuracy is higher in summer, and that the errors on five-day forecasts occur mainly around the marginal ice zone.展开更多
The method of extracting the basic features of part from the file of STEPAP214 of 3-D model is proposed. All faces in the file are the minimal elements. The combination isdone for the faces with geometry restrictions ...The method of extracting the basic features of part from the file of STEPAP214 of 3-D model is proposed. All faces in the file are the minimal elements. The combination isdone for the faces with geometry restrictions and some attributes by the theory of the bestalphabetic tree which is constructed by HU--TUCKER algorithm in combination principle. So the basicfeatures could be attained. This provides the research basis to the more share and integration ofCAD information in the virtual enterprises. Finally, a case is used to illustrate the validity ofthe approach.展开更多
By means of analysing the mechanism of blending materials,a general blending efficiency model was proposed.Applying this general model to an example 9 a suitable formula of blending efficiency which is more accurate t...By means of analysing the mechanism of blending materials,a general blending efficiency model was proposed.Applying this general model to an example 9 a suitable formula of blending efficiency which is more accurate than those in papers[2-3]was obtained.Finally,a high-precision optimal combining prediction formula for calculating blending efficiency was proposed.展开更多
Double-digested Restriction Site Associated DNA Sequencing(ddRAD) through next-generation sequencing(NGS) generates large numbers of loci for characterizing genomewide variation among multiple samples using next-g...Double-digested Restriction Site Associated DNA Sequencing(ddRAD) through next-generation sequencing(NGS) generates large numbers of loci for characterizing genomewide variation among multiple samples using next-generation sequencing. Different combinations of restriction endonucleases(REs) may produce varying size distributions of digested fragments, which affect the number of genotyped loci. Understanding digestion profiles across different species will help in selecting REs for digestion in a particular organism. In this study, we use of genome sequences to compare the in silico digestion profile of 26 combinations of REs in 131 insect species with two simulation programs. The number of digested fragments in the 300-450 bp range increases linearly with the size of the genome. Different species and insect orders showed similar profiles when digested by different combinations of REs in silico, indicating the conservation of digestion by double enzymes in insect genomes. Combinations with Nla III or TaqαI usually produced higher number of fragments in the range 300-450 bp, while combinations with EcoRI or MluCI produced fewer fragments. The proportion of fragments with the same overhangs at the two ends of digested DNA was higher than those with different overhangs. The two four-base enzyme pairs produced more fragments in the 300-450 bp range than pairs of four-base + six-base enzymes. Experimental digestion of three species from Hymenoptera, Lepidoptera and Thysanoptera showed profiles congruent with in silico expectations. Our results shed light on understanding the digestion profiles of insect genomes and provide guidance on selecting REs for ddRAD projects.展开更多
基金supported by the National Natural Science Foundation of China (NSFC)under Grant Nos.12172350,11772322 and 11702238。
文摘We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.
基金This study was financially supported by the National Natural Science Foundation of China(NSFC)under Grant No.11772322the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDB22040502.
文摘A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study.The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points,and in topology sensitivity analysis with respect to the artificial densities of sound absorption material.OpenMP tool in Fortran code is adopted to improve the efficiency of analysis.To consider the features and efficiencies of the two types of optimization methods,this study adopts a combined iteration scheme for the optimization process to investigate the simultaneous change of geometry shape and distribution of material to achieve better noise control.Numerical examples,such as sound barrier,simple tank,and BeTSSi submarine,are performed to validate the advantage of combined optimization in noise reduction,and to demonstrate the potential of the proposed method for engineering problems.
文摘The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is introduced. Compared with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems.
基金This article belongs to the project of the“The University Synergy Innovation Program of Anhui Province(GXXT-2019-004)”“Natural Science Research Project of Anhui Universities(KJ2021ZD0144)”“Wuhu Key R&D Project:Research and Industrialization of Intelligent Control Method of Engine Energy-feeding Hydraulic Semi-Active Mount”.
文摘In order to determine the optimal structural parameters of a plastic centrifugal pump in the framework of an orthogonal-experiment approach,a numerical study of the related flow field has been performed using CFX.The thickness S,outlet angleβ2,inlet angleβ1,wrap angle,and inlet diameter D1 of the splitter blades have been considered as the variable factors,using the shaft power and efficiency of the pump as evaluation indices.Through a parametric analysis,the relative importance of the influence of each structural parameter on each evaluation index has been obtained,leading to the following combinations:β119°,β235°,S 2 mm,wrap angle 154°,and D185 mm(corresponding to the maximum efficiency of 75.48%);β119°,β220°,S 6 mm,wrap angle 158°,and D181 mm(corresponding to the minimum shaft power of 75.48%).Moreover,the grey correlation method has been applied to re-optimize the shaft power and efficiency of the pump,leading to the following optimal combination:β119°,β215°,S 4 mm,D181 mm,and wrap angle 152°(corresponding to the maximum efficiency of 71.81%and minimum shaft power of 2.187 kW).
文摘The application of green building technology can not only protect the environment in construction, achieve the purpose of ecological construction, improve the application level of green technology, but also effectively promote economic development. Green building technology first requires the use of environmental protection building materials, improve the utilization of resources, the application of green energy-saving construction technology, to achieve the effect of energy saving and emission reduction, green building technology is expected to achieve considerable ecological benefits. Next, the article discusses the optimization and combination of green building technology in architectural design.
基金supported by the National Natural Science Foundation of China(Grant Nos.52375264 and 62376212).
文摘The power sector is an important factor in ensuring the development of the national economy.Scientific simulation and prediction of power consumption help achieve the balance between power generation and power consumption.In this paper,a Multi-strategy Hybrid Coati Optimizer(MCOA)is used to optimize the parameters of the three-parameter combinatorial optimization model TDGM(1,1,r,ξ,Csz)to realize the simulation and prediction of China's daily electricity consumption.Firstly,a novel MCOA is proposed in this paper,by making the following improvements to the Coati Optimization Algorithm(COA):(ⅰ)Introduce improved circle chaotic mapping strategy.(ⅱ)Fusing Aquila Optimizer,to enhance MCOA's exploration capabilities.(ⅲ)Adopt an adaptive optimal neighborhood jitter learning strategy.Effectively improve MCOA escape from local optimal solutions.(ⅳ)Incorporating Differential Evolution to enhance the diversity of the population.Secondly,the superiority of the MCOA algorithm is verified by comparing it with the newly proposed algorithm,the improved optimiza-tion algorithm,and the hybrid algorithm on the CEC2019 and CEC2020 test sets.Finally,in this paper,MCOA is used to optimize the parameters of TDGM(1,1,r,ξ,Csz),and this model is applied to forecast the daily electricity consumption in China and compared with the predictions of 14 models,including seven intelligent algorithm-optimized TDGM(1,1,r,ξ,Csz),and seven forecasting models.The experimental results show that the error of the proposed method is minimized,which verifies the validity of the proposed method.
基金This work was supported by the Natural Science Foundation of Anhui Province(2022AH050703)the National Natural Science Foundation of China(11671375).
文摘Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primarily focuses on identifying the maximum tolerated dose(MTD),therapies involving targeted and immune agents facilitate the identifica-tion of an optimal biological dose combination(OBDC)by simultaneously evaluating both toxicity and efficacy.Cur-rently,most approaches to determining the OBDC in the literature are model-based and require complex model fittings,making them cumbersome and challenging to implement.To address these challenges,we developed a novel model-as-sisted approach called uTPI-Comb.This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy,which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials.Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations.
基金This project was supported by the National Natural Science Foundation of Shangdong Province (Y98F12093) .
文摘NP-hard combinational optimization problem is not solved very well until now. One enhanced ants system based on ants system is advanced after analysis of the deficiencies of existing ants systems. Some improvements are made in state transfer rule and local modification rule. Furthermore, the enhanced ants system can solve NP-hard combinational optimization problem with restraints and condition path. The successful application of TSP problem and transportation net problem indicates that the proposed system has stronger function and higher efficiency than the original system.
基金This project was supported by the National Defense Pre-Research Foundation of China
文摘The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present research on WTA is focused on models and algorithms. In the research on models of WTA, the static WTA models are mainly studied and the dynamic WTA models are not fully studied in deed. In the research on algorithms of WTA, the intelligent algorithms are often used to solve the WTA problem. The small scale of static WTA problems has been solved very well, however, the large scale of dynamic WTA problems has not been solved effectively so far. Finally, the characteristics of dynamic WTA are analyzed and directions for the future research on dynamic WTA are discussed.
基金The project was supported by the National Science Foundation of China (70572045)
文摘A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression (SVMR) ensemble is proposed by resampling from given training data sets repeatedly and aggregating several independent SVMRs, each of which is trained to use a replicated training set. After training, several independently trained SVMRs need to be aggregated in an appropriate combination manner. Generally, the linear weighting is usually used like expert weighting score in Boosting Regression and it is without optimization capacity. Three combination techniques are proposed, including simple arithmetic mean, linear least square error weighting and nonlinear hierarchical combining that uses another upper-layer SVMR to combine several lower-layer SVMRs. Finally, simulation experiments demonstrate the accuracy and validity of the presented algorithm.
基金supported by the Beijing Scholars Program[BSP041]。
文摘The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.
基金This research was supported by the National Natural Science Foundation of China(No.41601211)the Open Fund of the State Key Laboratory of Soil and Sustainable Agriculture,China(No.Y20160007)+1 种基金the Special Fund for Agro-scientific Research in the Public Interest,China(No.200903001-01)the Talent Fund of Qingdao Agricultural University,China(No.1114344).
文摘Monitoring the dynamics of soil salinization is of great importance for agricultural production.This study selected Yucheng County,a typical county on the Huang-Huai-Hai Plain(HHHP)of China,as the study area and evaluated the spatial and temporal variation of soil salinization.Three methods,consisting of principal component analysis(PCA)transformation,tasseled cap(TC)transformation,and optimal band combination(OBC),were used to extract information from an early Landsat multispectral scanner(MSS)image from 1984,and their advantages were compared.In addition,OBC was used on a thematic mapper(TM)image from 2009.An iteratively self-organizing data analysis algorithm was used together with prior knowledge of likely classifications to interpret the MSS and TM images for data classification.Finally,a transfer matrix method was used to assess the spatial and temporal variability of soil salinization and analyze the driving factors of soil salinization.Compared to PCA transformation and OBC,TC transformation was a more effective method for extracting soil salinization information from the MSS sensor.The results indicate that a soil area of approximately 298 km^2was affected by salinity in 1984 in Yucheng County,of which 5.40%,11.96%,and 12.75%were classified as being subject to slight,moderate,and severe salinization,respectively.In 2009,the saline area was reduced to only 146 km^2,of which 10.70%and 3.75%were characterized by slight to moderate salinization and no severe salinization,respectively.The saline land decreased at an average rate of 6 km^2per year.This decrease was probably a result of lower groundwater depth,increased organic fertilizer or crop straw in soil,changed land use type,and increased vegetation coverage.
基金by the National Natural Science Foundation of China(Nos.81872809,82073786)the Beijing Natural Science Foundation(L212013).
文摘The combination regimen of trastuzumab(Tras)plus Nab-paclitaxel(Nab)is recommended to treat HER2-positive(HER2+)cancers.However,they exert effects in different mechanisms:Tras need to stay on cell membranes,while Nab need to be endocytosed,therefore the concurrent combination regimen may not be the best one in HER2+tumors treatment.Caveolin-1(Cav-1)is a key player in mediating their endocytosis and is associated with their efficacy,but few researches noticed the opposite effect of Cav-1 expression on the combination efficacy.Herein,we systematically studied the Cav-1 expression level on the combination efficacy and proposed an optimized and clinically feasible combination regimen for HER2+Cav-1 High tumor treatment.In the regimen,lovastatin(Lova)was introduced to modulate the Cav-1 expression and the results indicated that Lova could downregulate Cav-1 expression,increase Tras retention on cell membrane and enhance the in vitro cytotoxicity of Tras in HER2+Cav-1 High cells but not in HER2+Cav-1 Low cells.Therefore,by exchanging the dosing sequence of Nab and Tras,and by adding Lova at appropriate time points,the precise three-drug-sequential regimen(PTDS,Nab(D1)-Lova(D2)-Lova&Tras(D2+12 h))was established.Compared with the concurrent regimen,the PTDS regimen exhibited a higher in vitro cytotoxicity and a stronger tumor growth inhibition in HER2+Cav-1 High tumors,which might be a promising combination regimen for these patients in clinics.
文摘Reconnaissance mission planning of multiple unmanned aerial vehicles(UAVs)under an adversarial environment is a discrete combinatorial optimization problem which is proved to be a non-deterministic polynomial(NP)-complete problem.The purpose of this study is to research intelligent multiUAVs reconnaissance mission planning and online re-planning algorithm under various constraints in mission areas.For numerous targets scattered in the wide area,a reconnaissance mission planning and re-planning system is established,which includes five modules,including intelligence analysis,sub-mission area division,mission sequence planning,path smoothing,and online re-planning.The intelligence analysis module depicts the attribute of targets and the heterogeneous characteristic of UAVs and computes the number of sub-mission areas on consideration of voyage distance constraints.In the sub-mission area division module,an improved K-means clustering algorithm is designed to divide the reconnaissance mission area into several sub-mission areas,and each sub-mission is detected by the UAV loaded with various detective sensors.To control reconnaissance cost,the sampling and iteration algorithms are proposed in the mission sequence planning module,which are utilized to solve the optimal or approximately optimal reconnaissance sequence.In the path smoothing module,the Dubins curve is applied to smooth the flight path,which assure the availability of the planned path.Furthermore,an online re-planning algorithm is designed for the uncertain factor that the UAV is damaged.Finally,reconnaissance planning and re-planning experiment results show that the algorithm proposed in this paper are effective and the algorithms designed for sequence planning have a great advantage in solving efficiency and optimality.
文摘A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.
基金Natural Science Foundation of Guangxi (0832019Z)Natural Science Foundation of China (40675023)
文摘Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.
基金supported by the National Natural Sci-ence Foundation of China(Grant nos.40906099,40930848)the National Science and Technology Supporting Program of China(Grant no.2011BAC 03B02-03-02)the Ocean Public Welfare Scientific Research Project of China(Grant no.2012418007)
文摘A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational ice forecast system based on a com- bined optimal interpolation and nudging scheme. The scheme produces a modeled sea ice concentration at every time step, based on the difference between observational and forecast data and on the ratio of observational error to modeled error. The impact and the effectiveness of data assimilation are investigated. Significant improvements to predictions of sea ice extent were obtained through the assimilation of ice concentration, and minor improvements through the adjustment of the upper ocean properties. The assimilation of ice thickness data did not significantly improve predictions. Forecast experiments show that the forecast accuracy is higher in summer, and that the errors on five-day forecasts occur mainly around the marginal ice zone.
基金This project is supported by Key Laboratory Program of National Defense-Science Foundation of China (No.51458030103BQ0205)Prorincial Natural Science Foundation of Jiangsu, China (No.BK2003094).
文摘The method of extracting the basic features of part from the file of STEPAP214 of 3-D model is proposed. All faces in the file are the minimal elements. The combination isdone for the faces with geometry restrictions and some attributes by the theory of the bestalphabetic tree which is constructed by HU--TUCKER algorithm in combination principle. So the basicfeatures could be attained. This provides the research basis to the more share and integration ofCAD information in the virtual enterprises. Finally, a case is used to illustrate the validity ofthe approach.
文摘By means of analysing the mechanism of blending materials,a general blending efficiency model was proposed.Applying this general model to an example 9 a suitable formula of blending efficiency which is more accurate than those in papers[2-3]was obtained.Finally,a high-precision optimal combining prediction formula for calculating blending efficiency was proposed.
基金funded by the Natural Science Foundation of Beijing Municipality(6162010)the National Natural Science Foundation of China(31472025)+1 种基金the International Cooperation Fund of Beijing Academy of Agriculture and Forestry Sciences(GJHZ2017)the Beijing Key Laboratory of Environmentally Friendly Pest Management on Northern Fruits(BZ0432)
文摘Double-digested Restriction Site Associated DNA Sequencing(ddRAD) through next-generation sequencing(NGS) generates large numbers of loci for characterizing genomewide variation among multiple samples using next-generation sequencing. Different combinations of restriction endonucleases(REs) may produce varying size distributions of digested fragments, which affect the number of genotyped loci. Understanding digestion profiles across different species will help in selecting REs for digestion in a particular organism. In this study, we use of genome sequences to compare the in silico digestion profile of 26 combinations of REs in 131 insect species with two simulation programs. The number of digested fragments in the 300-450 bp range increases linearly with the size of the genome. Different species and insect orders showed similar profiles when digested by different combinations of REs in silico, indicating the conservation of digestion by double enzymes in insect genomes. Combinations with Nla III or TaqαI usually produced higher number of fragments in the range 300-450 bp, while combinations with EcoRI or MluCI produced fewer fragments. The proportion of fragments with the same overhangs at the two ends of digested DNA was higher than those with different overhangs. The two four-base enzyme pairs produced more fragments in the 300-450 bp range than pairs of four-base + six-base enzymes. Experimental digestion of three species from Hymenoptera, Lepidoptera and Thysanoptera showed profiles congruent with in silico expectations. Our results shed light on understanding the digestion profiles of insect genomes and provide guidance on selecting REs for ddRAD projects.