Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventio...Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventional Reinforcement Learning(RL)algorithms,often focus on maximizing engagement outcomes through direct combat superiority.However,these methods overlook alternative tactics,such as inducing adversaries to crash,which can achieve decisive victories with lower risk and cost.This study proposes Alpha Crash,a novel distributional-rein forcement-learning-based agent specifically designed to defeat opponents by leveraging crash induction strategies.The approach integrates an improved QR-DQN framework to address uncertainties and adversarial tactics,incorporating advanced pilot experience into its reward functions.Extensive simulations reveal Alpha Crash's robust performance,achieving a 91.2%win rate across diverse scenarios by effectively guiding opponents into critical errors.Visualization and altitude analyses illustrate the agent's three-stage crash induction strategies that exploit adversaries'vulnerabilities.These findings underscore Alpha Crash's potential to enhance autonomous decision-making and strategic innovation in real-world air combat applications.展开更多
Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes...Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms.展开更多
The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),...The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),which can be abstracted as a heterogeneous combat network(HCN).It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS.To this end,this paper proposes an integrated framework called HCN disintegration based on double deep Q-learning(HCN-DDQL).Firstly,the enemy’s CSoS is abstracted as an HCN,and an evaluation index based on the capability and attack costs of nodes is proposed.Meanwhile,a mathematical optimization model for HCN disintegration is established.Secondly,the learning environment and double deep Q-network model of HCN-DDQL are established to train the HCN’s disintegration strategy.Then,based on the learned HCN-DDQL model,an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed.Finally,a case study is used to demonstrate the reliability and effectiveness of HCNDDQL,and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods.展开更多
The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in th...The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems.展开更多
During its interaction with modern sports,traditional Wushu has faced increasing doubts about its combat effectiveness,raising concerns about its cultural identity.How traditional Wushu is understood as a combat art n...During its interaction with modern sports,traditional Wushu has faced increasing doubts about its combat effectiveness,raising concerns about its cultural identity.How traditional Wushu is understood as a combat art not only helps define its cultural essence but also carries important implications for its long-term development.It is an objective fact that combat represents the practical manifestation of traditional Wushu in history.Combat reflects similarities among traditional Wushu forms that emerged throughout history.Combat reflects the historical law governing the evolution of traditional Wushu and represents an abstraction of repetitive phenomena in traditional Wushu.A correct understanding of this objectivity,these similarities,and this repeatability is conducive to promoting and carrying forward traditional Wushu,thereby facilitating an objective analysis of differences among different traditional Wushu forms and the discovery of their evolution paradigm.In the contemporary context,it is essential for traditional Wushu to emphasize its distinctive cultural roots,thereby facilitating creative transformation and innovative development.展开更多
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra...To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.展开更多
Beyond-visual-range(BVR)air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making.However,the traditional threat assessment method is flawed in its ...Beyond-visual-range(BVR)air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making.However,the traditional threat assessment method is flawed in its failure to consider the intention and event of the target,resulting in inaccurate assessment results.In view of this,an integrated threat assessment method is proposed to address the existing problems,such as overly subjective determination of index weight and imbalance of situation.The process and characteristics of BVR air combat are analyzed to establish a threat assessment model in terms of target intention,event,situation,and capability.On this basis,a distributed weight-solving algorithm is proposed to determine index and attribute weight respectively.Then,variable weight and game theory are introduced to effectively deal with the situation imbalance and achieve the combination of subjective and objective.The performance of the model and algorithm is evaluated through multiple simulation experiments.The assessment results demonstrate the accuracy of the proposed method in BVR air combat,indicating its potential practical significance in real air combat scenarios.展开更多
Since the beginning of European integration,the European Community has been committed to building an internal single market.Economically,it has been encouraging free competition,combating monopolies,and cautiously usi...Since the beginning of European integration,the European Community has been committed to building an internal single market.Economically,it has been encouraging free competition,combating monopolies,and cautiously using industrial policies.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
As a major principle underlying the Communist Party of China's(CPC)governance in the new era and a core piece of its holistic approach to national security,ensuring both development and security emphasizes compreh...As a major principle underlying the Communist Party of China's(CPC)governance in the new era and a core piece of its holistic approach to national security,ensuring both development and security emphasizes comprehensive governance from a long-term perspective and influences the world with its global vision.It keeps pace with the times by prioritizing innovative areas and is of great theoretical and practical significance.On the new journey ahead,we must firmly ensure both development and security.More importantly,we must ensure both high-quality development and high-level security,safeguarding the former through the latter.This is an urgent requirement we face in today's world,which has entered a period of turbulence and transformation characterized by increasing complexity.Confronted with the formidable tasks of promoting reform and development while maintaining stability at home and the grave challenges brought about by international turbulence and changes,we must earnestly implement the guiding principles of the 20th CPC National Congress and the third plenary session of the 20th Party Central Committee.We should ensure secure and sustainable development,accelerate efforts to modernize China's national security system and capacity,foster high-level security,and improve the mechanisms for preserving national security in foreign-related affairs.In short,we should strive to achieve a positive interplay between high-quality development and high-level security,so as to effectively safeguard Chinese modernization.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
The characteristics of the confrontation between fighters and air-defense systems on ship are analyzed. The approach of simulating operations of both sides is presented based on the combination of random-factor effect...The characteristics of the confrontation between fighters and air-defense systems on ship are analyzed. The approach of simulating operations of both sides is presented based on the combination of random-factor effectiveness simulation models and deterministic models. Two basic indices are proposed to indicate task effectiveness (i. e. the survival probability of the fighter team and the specified effect of damage on the fleet) and relative algo- rithms. To verify the approach, the situation that a fighter team attacks a collective defense fleet is exemplified and the task effectiveness of this case is also calculated. The method for evaluating task effectiveness on anti-ship attack can be applied in aircraft design and tactical research.展开更多
The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susce...The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable.展开更多
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that ope...The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.展开更多
To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr...To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.展开更多
In order to improve the autonomous ability of unmanned aerial vehicles(UAV)to implement air combat mission,many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried ou...In order to improve the autonomous ability of unmanned aerial vehicles(UAV)to implement air combat mission,many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried out,but these studies are often aimed at individual decision-making in 1 v1 scenarios which rarely happen in actual air combat.Based on the research of the 1 v1 autonomous air combat maneuver decision,this paper builds a multi-UAV cooperative air combat maneuver decision model based on multi-agent reinforcement learning.Firstly,a bidirectional recurrent neural network(BRNN)is used to achieve communication between UAV individuals,and the multi-UAV cooperative air combat maneuver decision model under the actor-critic architecture is established.Secondly,through combining with target allocation and air combat situation assessment,the tactical goal of the formation is merged with the reinforcement learning goal of every UAV,and a cooperative tactical maneuver policy is generated.The simulation results prove that the multi-UAV cooperative air combat maneuver decision model established in this paper can obtain the cooperative maneuver policy through reinforcement learning,the cooperative maneuver policy can guide UAVs to obtain the overall situational advantage and defeat the opponents under tactical cooperation.展开更多
A formation model of manned/unmanned aerial vehicle(MAV/UAV) collaborative combat can qualitatively and quantitatively analyze the synergistic effects.However,there is currently no effective and appropriate model cons...A formation model of manned/unmanned aerial vehicle(MAV/UAV) collaborative combat can qualitatively and quantitatively analyze the synergistic effects.However,there is currently no effective and appropriate model construction method or theory,and research in the field of collaborative capability evaluation is basically nonexistent.According to the actual conditions of cooperative operations,a new MAV/UAV collaborative combat network model construction method based on a complex network is presented.By analyzing the characteristic parameters of the abstract network,the index system and complex network are combined.Then,a method for evaluating the synergistic effect of the cooperative combat network is developed.This method provides assistance for the verification and evaluation of MAV/UAV collaborative combat.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB3300602)。
文摘Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventional Reinforcement Learning(RL)algorithms,often focus on maximizing engagement outcomes through direct combat superiority.However,these methods overlook alternative tactics,such as inducing adversaries to crash,which can achieve decisive victories with lower risk and cost.This study proposes Alpha Crash,a novel distributional-rein forcement-learning-based agent specifically designed to defeat opponents by leveraging crash induction strategies.The approach integrates an improved QR-DQN framework to address uncertainties and adversarial tactics,incorporating advanced pilot experience into its reward functions.Extensive simulations reveal Alpha Crash's robust performance,achieving a 91.2%win rate across diverse scenarios by effectively guiding opponents into critical errors.Visualization and altitude analyses illustrate the agent's three-stage crash induction strategies that exploit adversaries'vulnerabilities.These findings underscore Alpha Crash's potential to enhance autonomous decision-making and strategic innovation in real-world air combat applications.
文摘Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms.
基金supported by the National Natural Science Foundation of China(7200120972231011+2 种基金72071206)the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province(2020RC4046)the Science Foundation for Outstanding Youth Scholars of Hunan Province(2022JJ20047).
文摘The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),which can be abstracted as a heterogeneous combat network(HCN).It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS.To this end,this paper proposes an integrated framework called HCN disintegration based on double deep Q-learning(HCN-DDQL).Firstly,the enemy’s CSoS is abstracted as an HCN,and an evaluation index based on the capability and attack costs of nodes is proposed.Meanwhile,a mathematical optimization model for HCN disintegration is established.Secondly,the learning environment and double deep Q-network model of HCN-DDQL are established to train the HCN’s disintegration strategy.Then,based on the learned HCN-DDQL model,an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed.Finally,a case study is used to demonstrate the reliability and effectiveness of HCNDDQL,and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods.
基金co-supported by the National Natural Science Foundation of China(No.91852115)。
文摘The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems.
文摘During its interaction with modern sports,traditional Wushu has faced increasing doubts about its combat effectiveness,raising concerns about its cultural identity.How traditional Wushu is understood as a combat art not only helps define its cultural essence but also carries important implications for its long-term development.It is an objective fact that combat represents the practical manifestation of traditional Wushu in history.Combat reflects similarities among traditional Wushu forms that emerged throughout history.Combat reflects the historical law governing the evolution of traditional Wushu and represents an abstraction of repetitive phenomena in traditional Wushu.A correct understanding of this objectivity,these similarities,and this repeatability is conducive to promoting and carrying forward traditional Wushu,thereby facilitating an objective analysis of differences among different traditional Wushu forms and the discovery of their evolution paradigm.In the contemporary context,it is essential for traditional Wushu to emphasize its distinctive cultural roots,thereby facilitating creative transformation and innovative development.
文摘To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
基金National Natural Science Foundation of China(62006193,62103338)Aeronautical Science Foundation of China(2022Z023053001)+1 种基金Key Research and Development Program of Shaanxi Province(2024GX-YBXM-115)Fundamental Research Funds for the Central Universities(D5000230150)。
文摘Beyond-visual-range(BVR)air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making.However,the traditional threat assessment method is flawed in its failure to consider the intention and event of the target,resulting in inaccurate assessment results.In view of this,an integrated threat assessment method is proposed to address the existing problems,such as overly subjective determination of index weight and imbalance of situation.The process and characteristics of BVR air combat are analyzed to establish a threat assessment model in terms of target intention,event,situation,and capability.On this basis,a distributed weight-solving algorithm is proposed to determine index and attribute weight respectively.Then,variable weight and game theory are introduced to effectively deal with the situation imbalance and achieve the combination of subjective and objective.The performance of the model and algorithm is evaluated through multiple simulation experiments.The assessment results demonstrate the accuracy of the proposed method in BVR air combat,indicating its potential practical significance in real air combat scenarios.
文摘Since the beginning of European integration,the European Community has been committed to building an internal single market.Economically,it has been encouraging free competition,combating monopolies,and cautiously using industrial policies.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
文摘As a major principle underlying the Communist Party of China's(CPC)governance in the new era and a core piece of its holistic approach to national security,ensuring both development and security emphasizes comprehensive governance from a long-term perspective and influences the world with its global vision.It keeps pace with the times by prioritizing innovative areas and is of great theoretical and practical significance.On the new journey ahead,we must firmly ensure both development and security.More importantly,we must ensure both high-quality development and high-level security,safeguarding the former through the latter.This is an urgent requirement we face in today's world,which has entered a period of turbulence and transformation characterized by increasing complexity.Confronted with the formidable tasks of promoting reform and development while maintaining stability at home and the grave challenges brought about by international turbulence and changes,we must earnestly implement the guiding principles of the 20th CPC National Congress and the third plenary session of the 20th Party Central Committee.We should ensure secure and sustainable development,accelerate efforts to modernize China's national security system and capacity,foster high-level security,and improve the mechanisms for preserving national security in foreign-related affairs.In short,we should strive to achieve a positive interplay between high-quality development and high-level security,so as to effectively safeguard Chinese modernization.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
文摘The characteristics of the confrontation between fighters and air-defense systems on ship are analyzed. The approach of simulating operations of both sides is presented based on the combination of random-factor effectiveness simulation models and deterministic models. Two basic indices are proposed to indicate task effectiveness (i. e. the survival probability of the fighter team and the specified effect of damage on the fleet) and relative algo- rithms. To verify the approach, the situation that a fighter team attacks a collective defense fleet is exemplified and the task effectiveness of this case is also calculated. The method for evaluating task effectiveness on anti-ship attack can be applied in aircraft design and tactical research.
文摘The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable.
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
基金Research Fund from Science and Technology on Underwater Vehicle Laboratory
文摘The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.
基金supported by the Aeronautical Science Foundation of China(2017ZC53033)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(CX2020156)。
文摘In order to improve the autonomous ability of unmanned aerial vehicles(UAV)to implement air combat mission,many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried out,but these studies are often aimed at individual decision-making in 1 v1 scenarios which rarely happen in actual air combat.Based on the research of the 1 v1 autonomous air combat maneuver decision,this paper builds a multi-UAV cooperative air combat maneuver decision model based on multi-agent reinforcement learning.Firstly,a bidirectional recurrent neural network(BRNN)is used to achieve communication between UAV individuals,and the multi-UAV cooperative air combat maneuver decision model under the actor-critic architecture is established.Secondly,through combining with target allocation and air combat situation assessment,the tactical goal of the formation is merged with the reinforcement learning goal of every UAV,and a cooperative tactical maneuver policy is generated.The simulation results prove that the multi-UAV cooperative air combat maneuver decision model established in this paper can obtain the cooperative maneuver policy through reinforcement learning,the cooperative maneuver policy can guide UAVs to obtain the overall situational advantage and defeat the opponents under tactical cooperation.
文摘A formation model of manned/unmanned aerial vehicle(MAV/UAV) collaborative combat can qualitatively and quantitatively analyze the synergistic effects.However,there is currently no effective and appropriate model construction method or theory,and research in the field of collaborative capability evaluation is basically nonexistent.According to the actual conditions of cooperative operations,a new MAV/UAV collaborative combat network model construction method based on a complex network is presented.By analyzing the characteristic parameters of the abstract network,the index system and complex network are combined.Then,a method for evaluating the synergistic effect of the cooperative combat network is developed.This method provides assistance for the verification and evaluation of MAV/UAV collaborative combat.