Purpose–The efficient utilization of recycled concrete powder(RCP)has attracted much attention.To break through the limitation of single activation technology of RCP,this study investigates the effects of a mechanica...Purpose–The efficient utilization of recycled concrete powder(RCP)has attracted much attention.To break through the limitation of single activation technology of RCP,this study investigates the effects of a mechanical-microwave method on the reactivity of RCP.Design/methodology/approach–The mechanical properties,hydration products,and pore structure of RCP-incorporated mortar were evaluated.Findings–The results demonstrate that the combined activation reduces the median particle size of RCP and induces a low-frequency shift in the Si-O-T FT-IR characteristic peaks,signifying depolymerization of the silicate network and formation of highly reactive broken bond sites.Concurrently,decreased Si2p and Al2p binding energies in XPS spectra confirm enhanced surface reactivity.The 28-day strength activity index(SAI)of RCP mortar improved from 65.7(untreated)to 82.2%under optimal activation conditions(90-min ball milling followed by 10-min microwave irradiation),outperforming solely mechanical activation by 3.6–6.1%.Furthermore,combined activation increased chemically bound water content from 22.8 to 33.7%,accompanied by a low-wavenumber shift in FT-IR peaks of hydration products.The total porosity of RCP mortar decreased from 17.2 to 14.6%,indicating a denser pore structure.Originality/value–This study explores the feasibility and potential mechanism of mechanical-microwave activation of RCP,aiming to provide valuable insights for the sustainable development of materials.Using activated RCP in cement-based materials reduces the demand for cement and substantially cuts carbon emissions,thereby making a critical contribution to the construction industry’s green and low-carbon transition.展开更多
Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre...Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].展开更多
Frequency combs with equally spaced frequency lines show great potentials for applications in spectroscopy,imag-ing,communications,and so on.In the terahertz frequency region,the quantum cascade laser(QCL)is an ideal ...Frequency combs with equally spaced frequency lines show great potentials for applications in spectroscopy,imag-ing,communications,and so on.In the terahertz frequency region,the quantum cascade laser(QCL)is an ideal radiation source for frequency comb and dual-comb operation.The systematic evaluation of phase noise characteristics of terahertz QCL frequency comb and dual-comb sources is of great importance for high precision measurements.In this work,we present detailed measurements and analysis of the phase noise characteristics of terahertz QCL frequency comb and dual-comb sources emitting around 4.2 THz with repetition frequencies of~6.2 GHz.The measurement results for the current noise of the direct current(DC)sources(that are used to electrically pump the terahertz QCLs)indicate that at 100 Hz,the current noise for DC-1 and DC-2 is 0.3895 and 0.0982 nA/Hz1/2,respectively.Such levels of current noise can be safely disregarded.The phase noise of radio frequency(RF)generators(that are employed for injection locking and phase locking),intermode beatnotes,and dual-comb signals with and without phase-locked loop(PLL)are all measured and compared.The experimental results show that in the free-running mode,the phase noise of the intermode beatnote signals is always lower than that of the dual-comb sig-nals across all frequencies.Additionally,the phase noise induced by the RF generators is negligible.By employing the phase lock-ing technique,the phase noise of the intermode beatnote and dual-comb signals in the low offset frequency band can be signifi-cantly suppressed.At an offset frequency of 100 Hz,the measured phase noise values of the dual-comb line without and with phase locking are 15.026 and-64.801 dBc/Hz,respectively.展开更多
Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed ga...Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.展开更多
Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing ji...Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing jitter,thus improving time accuracy.With optical solutions,introducing an optical reference enables 105 harmonics measurements,thereby breaking the limit set by electrical methods;nonlinear processes or spectral interference schemes were also employed to track the relative timing jitter.However,such approaches operating in the time domain either require additional continuous references or impose stringent requirements on the amount of timing jitter.We propose a scheme to correct the relative timing jitter of a free-running dual-comb interferometry assisted by a Fabry-Pérot(F-P)cavity in the frequency domain.With high wavelength thermal stability provided by the F-P cavity,the absolute wavelength deviation in the operating bandwidth is compressed to<0.4 pm,corresponding to a subpicosecond sensitivity of pulse-to-pulse relative timing jitter.Also,Allan deviation of 10^(-10) is obtained under multiple coherent averaging,which lays the foundation for mode-resolved molecular spectroscopic applications.The spectral absorption features of hydrogen cyanide gas molecules at ambient temperature were measured and matched to the HITRAN database.Our scheme promises to provide new ideas on sensitive measurements of relative timing jitter.展开更多
基金sponsored by Science and Technology Research and Development Plan of China National Railway Group Co.,Ltd.(L2022G009)National Natural Science Foundation of China(52438002)+1 种基金Research Project of China Academy of Railway Science Corporation Limited(2024YJ254)New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Purpose–The efficient utilization of recycled concrete powder(RCP)has attracted much attention.To break through the limitation of single activation technology of RCP,this study investigates the effects of a mechanical-microwave method on the reactivity of RCP.Design/methodology/approach–The mechanical properties,hydration products,and pore structure of RCP-incorporated mortar were evaluated.Findings–The results demonstrate that the combined activation reduces the median particle size of RCP and induces a low-frequency shift in the Si-O-T FT-IR characteristic peaks,signifying depolymerization of the silicate network and formation of highly reactive broken bond sites.Concurrently,decreased Si2p and Al2p binding energies in XPS spectra confirm enhanced surface reactivity.The 28-day strength activity index(SAI)of RCP mortar improved from 65.7(untreated)to 82.2%under optimal activation conditions(90-min ball milling followed by 10-min microwave irradiation),outperforming solely mechanical activation by 3.6–6.1%.Furthermore,combined activation increased chemically bound water content from 22.8 to 33.7%,accompanied by a low-wavenumber shift in FT-IR peaks of hydration products.The total porosity of RCP mortar decreased from 17.2 to 14.6%,indicating a denser pore structure.Originality/value–This study explores the feasibility and potential mechanism of mechanical-microwave activation of RCP,aiming to provide valuable insights for the sustainable development of materials.Using activated RCP in cement-based materials reduces the demand for cement and substantially cuts carbon emissions,thereby making a critical contribution to the construction industry’s green and low-carbon transition.
基金supported by the National Natural Science Foundation China(No.42022051,No.U21A2028)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202089)the HFIPS Director's Fund(No.YZJJ202101,No.BJPY2023A02).
文摘Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].
基金supported by the Innovation Program for Quantum Science and Technology (2023ZD0301000)the National Science Fund for Distinguished Young Scholars (62325509)+3 种基金the National Natural Science Foundation of China (62235019,61875220,61927813,61991430,62035005,62105351,62275258,62035014,and 62305364)Science and Technology Commission of Shanghai Municipality (21ZR1474600)the"From 0 to 1"Innovation Program of the Chinese Academy of Sciences (ZDBS-LY-JSC009)the CAS Project for Young Scientists in Basic Research (YSBR-069).
文摘Frequency combs with equally spaced frequency lines show great potentials for applications in spectroscopy,imag-ing,communications,and so on.In the terahertz frequency region,the quantum cascade laser(QCL)is an ideal radiation source for frequency comb and dual-comb operation.The systematic evaluation of phase noise characteristics of terahertz QCL frequency comb and dual-comb sources is of great importance for high precision measurements.In this work,we present detailed measurements and analysis of the phase noise characteristics of terahertz QCL frequency comb and dual-comb sources emitting around 4.2 THz with repetition frequencies of~6.2 GHz.The measurement results for the current noise of the direct current(DC)sources(that are used to electrically pump the terahertz QCLs)indicate that at 100 Hz,the current noise for DC-1 and DC-2 is 0.3895 and 0.0982 nA/Hz1/2,respectively.Such levels of current noise can be safely disregarded.The phase noise of radio frequency(RF)generators(that are employed for injection locking and phase locking),intermode beatnotes,and dual-comb signals with and without phase-locked loop(PLL)are all measured and compared.The experimental results show that in the free-running mode,the phase noise of the intermode beatnote signals is always lower than that of the dual-comb sig-nals across all frequencies.Additionally,the phase noise induced by the RF generators is negligible.By employing the phase lock-ing technique,the phase noise of the intermode beatnote and dual-comb signals in the low offset frequency band can be signifi-cantly suppressed.At an offset frequency of 100 Hz,the measured phase noise values of the dual-comb line without and with phase locking are 15.026 and-64.801 dBc/Hz,respectively.
基金the National Natural Science Foun-dation of China(Grant No.52375546)the National Key Research and Development Program of China(Grant No.2022YFF0705701).
文摘Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0705904)the National Natural Science Foundation of China(Grant Nos.61927817 and 62075072).
文摘Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing jitter,thus improving time accuracy.With optical solutions,introducing an optical reference enables 105 harmonics measurements,thereby breaking the limit set by electrical methods;nonlinear processes or spectral interference schemes were also employed to track the relative timing jitter.However,such approaches operating in the time domain either require additional continuous references or impose stringent requirements on the amount of timing jitter.We propose a scheme to correct the relative timing jitter of a free-running dual-comb interferometry assisted by a Fabry-Pérot(F-P)cavity in the frequency domain.With high wavelength thermal stability provided by the F-P cavity,the absolute wavelength deviation in the operating bandwidth is compressed to<0.4 pm,corresponding to a subpicosecond sensitivity of pulse-to-pulse relative timing jitter.Also,Allan deviation of 10^(-10) is obtained under multiple coherent averaging,which lays the foundation for mode-resolved molecular spectroscopic applications.The spectral absorption features of hydrogen cyanide gas molecules at ambient temperature were measured and matched to the HITRAN database.Our scheme promises to provide new ideas on sensitive measurements of relative timing jitter.