AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A...AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A total of 141 healthy computer users underwent comprehensive clinical visual function assessments,including evaluations of refractive errors,accommodation(amplitude of accommodation,positive relative accommodation,negative relative accommodation,accommodative accuracy,and accommodative facility),and vergence(phoria,positive and negative fusional vergence,near point of convergence,and vergence facility).Total CVS-Q scores were recorded to explore potential associations between symptom scores and the aforementioned clinical visual function parameters.RESULTS:The cohort included 54 males(38.3%)with a mean age of 23.9±0.58y and 87 age-matched females(61.7%)with a mean age of 23.9±0.53y.The multiple regression model was statistically significant[R²=0.60,F=13.28,degrees of freedom(DF=17122,P<0.001].This indicates that 60%of the variance in total CVS-Q scores(reflecting reported symptoms)could be explained by four clinical measurements:amplitude of accommodation,positive relative accommodation,exophoria at distance and near,and positive fusional vergence at near.CONCLUSION:The total CVS-Q score is a valid and reliable tool for predicting the presence of various nonstrabismic binocular vision anomalies and refractive errors in symptomatic computer users.展开更多
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear...The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.展开更多
AIM:To investigate the association between functionaloutcomes and postoperative patient satisfaction 5y aftersmall incision lenticule extraction(SMILE)and femtosecondlaser-assisted in situ keratomileusis(FS-LASIK).MET...AIM:To investigate the association between functionaloutcomes and postoperative patient satisfaction 5y aftersmall incision lenticule extraction(SMILE)and femtosecondlaser-assisted in situ keratomileusis(FS-LASIK).METHODS:This is a cross-sectional study.Thepatients underwent basic ophthalmic examinations,axiallength measurement,wide-field fundus photography,andaccommodation function testing.Behavioral habits datawere collected using a self-administered questionnaire,andvisual symptoms were assessed with the Quality of Vision(QoV)questionnaire.Postoperative satisfaction was alsorecorded.RESULTS:Totally 410 subjects[820 eyes,160males(39.02%)and 250 females(60.98%)]who hadundergone SMILE or FS-LASIK 5y ago were enrolled.Themean(standard deviation,SD)age of all patients was29.83y(6.69).The mean(SD)preoperative manifest SEwas-5.80(2.04)diopters(D;range:-0.88 to-13.75).Patient satisfaction at 5y after undergoing SMILE or FSLASIKwas 91.70%.Patients were categorized into twogroups:dissatisfied group and satisfied group.Significantdifferences were observed between the two groups in termsof age(P=0.012),sex(P=0.021),preoperative degreeof myopia(P=0.049),postoperative visual symptoms(frequency,P=0.043;severity,P<0.001;bothersome,P=0.018),difficulty driving at night(P=0.001),andaccommodative amplitude(AMP,P=0.020).Multivariateanalysis confirmed that female sex(P=0.024),severityof visual symptoms(P=0.009),and difficulty driving atnight(P=0.006)were significantly associated with lowersatisfaction.The dissatisfied group showed higher rates ofstarbursts,double or multiple images,and high myopia,but lower age.The frequency,severity,and bothersome ofdistortion exhibited decreased with increasing age.CONCLUSION:Patient satisfaction 5y after SMILEand FS-LASIK is high and stable.Difficulty driving at night,sex,and severity of visual symptoms are important factorsinfluencing patient satisfaction.Special attention should bepaid to younger highly myopic female patients,particularlythose with starbursts and double or multiple images.It is crucial to monitor postoperative visual outcomesand provide patients with comprehensive preoperativecounseling to enhance long-term satisfaction.展开更多
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni...Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.展开更多
Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a...Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.展开更多
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve...To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.展开更多
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.展开更多
基金Supported by Ongoing Research Funding Program(ORFFT-2025-054-1),King Saud University,Riyadh,Saudi Arabia.
文摘AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A total of 141 healthy computer users underwent comprehensive clinical visual function assessments,including evaluations of refractive errors,accommodation(amplitude of accommodation,positive relative accommodation,negative relative accommodation,accommodative accuracy,and accommodative facility),and vergence(phoria,positive and negative fusional vergence,near point of convergence,and vergence facility).Total CVS-Q scores were recorded to explore potential associations between symptom scores and the aforementioned clinical visual function parameters.RESULTS:The cohort included 54 males(38.3%)with a mean age of 23.9±0.58y and 87 age-matched females(61.7%)with a mean age of 23.9±0.53y.The multiple regression model was statistically significant[R²=0.60,F=13.28,degrees of freedom(DF=17122,P<0.001].This indicates that 60%of the variance in total CVS-Q scores(reflecting reported symptoms)could be explained by four clinical measurements:amplitude of accommodation,positive relative accommodation,exophoria at distance and near,and positive fusional vergence at near.CONCLUSION:The total CVS-Q score is a valid and reliable tool for predicting the presence of various nonstrabismic binocular vision anomalies and refractive errors in symptomatic computer users.
基金financially supported by the National Science Fund for Distinguished Young Scholars,China(No.52025041)the National Natural Science Foundation of China(Nos.52450003,U2341267,and 52174294)+1 种基金the National Postdoctoral Program for Innovative Talents,China(No.BX20240437)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-23-037 and FRF-TP-20-02C2)。
文摘The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.
基金Supported by Research and Transformation Application of Capital Clinical Diagnosis and Treatment Technology by Beijing Municipal Commission of Science and Technology(No.Z201100005520043).
文摘AIM:To investigate the association between functionaloutcomes and postoperative patient satisfaction 5y aftersmall incision lenticule extraction(SMILE)and femtosecondlaser-assisted in situ keratomileusis(FS-LASIK).METHODS:This is a cross-sectional study.Thepatients underwent basic ophthalmic examinations,axiallength measurement,wide-field fundus photography,andaccommodation function testing.Behavioral habits datawere collected using a self-administered questionnaire,andvisual symptoms were assessed with the Quality of Vision(QoV)questionnaire.Postoperative satisfaction was alsorecorded.RESULTS:Totally 410 subjects[820 eyes,160males(39.02%)and 250 females(60.98%)]who hadundergone SMILE or FS-LASIK 5y ago were enrolled.Themean(standard deviation,SD)age of all patients was29.83y(6.69).The mean(SD)preoperative manifest SEwas-5.80(2.04)diopters(D;range:-0.88 to-13.75).Patient satisfaction at 5y after undergoing SMILE or FSLASIKwas 91.70%.Patients were categorized into twogroups:dissatisfied group and satisfied group.Significantdifferences were observed between the two groups in termsof age(P=0.012),sex(P=0.021),preoperative degreeof myopia(P=0.049),postoperative visual symptoms(frequency,P=0.043;severity,P<0.001;bothersome,P=0.018),difficulty driving at night(P=0.001),andaccommodative amplitude(AMP,P=0.020).Multivariateanalysis confirmed that female sex(P=0.024),severityof visual symptoms(P=0.009),and difficulty driving atnight(P=0.006)were significantly associated with lowersatisfaction.The dissatisfied group showed higher rates ofstarbursts,double or multiple images,and high myopia,but lower age.The frequency,severity,and bothersome ofdistortion exhibited decreased with increasing age.CONCLUSION:Patient satisfaction 5y after SMILEand FS-LASIK is high and stable.Difficulty driving at night,sex,and severity of visual symptoms are important factorsinfluencing patient satisfaction.Special attention should bepaid to younger highly myopic female patients,particularlythose with starbursts and double or multiple images.It is crucial to monitor postoperative visual outcomesand provide patients with comprehensive preoperativecounseling to enhance long-term satisfaction.
文摘Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.
基金the National Key Research and Development Program of China(2021YFA0717900)National Natural Science Foundation of China(62471251,62405144,62288102,22275098,and 62174089)+1 种基金Basic Research Program of Jiangsu(BK20240033,BK20243057)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB402).
文摘Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.
基金The National Natural Science Foundation of China(No.52338011,52378291)Young Elite Scientists Sponsorship Program by CAST(No.2022-2024QNRC0101).
文摘To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.
基金funded by Woosong University Academic Research 2024.
文摘This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.