期刊文献+
共找到1,174篇文章
< 1 2 59 >
每页显示 20 50 100
Performance Optimization of a U-Shaped Liquid Cooling Plate:A Synergistic Study of FlowGuide Plate and Spoiler Columns
1
作者 Jing Hu Xiaoyu Zhang 《Frontiers in Heat and Mass Transfer》 2025年第3期957-974,共18页
As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A s... As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules. 展开更多
关键词 U-shaped liquid cooling plate flow guide plate spoiler columns optimization
在线阅读 下载PDF
State-of-the-Art Review on Seepage Instability and Water Inrush Mechanisms in Karst Collapse Columns
2
作者 Zhengzheng Cao Shuaiyang Zhang +5 位作者 Cunhan Huang Feng Du Zhenhua Li Shuren Wang Wenqiang Wang Minglei Zhai 《Fluid Dynamics & Materials Processing》 2025年第5期1007-1028,共22页
Karst collapse columns typically appear unpredictably and without a uniform spatial arrangement,posing challenges for mining operations and water inrush risk assessment.As major structural pathways for mine water inru... Karst collapse columns typically appear unpredictably and without a uniform spatial arrangement,posing challenges for mining operations and water inrush risk assessment.As major structural pathways for mine water inrush,they are responsible for some of the most frequent and severe water-related disasters in coal mining.Understanding the mechanisms of water inrush in these collapse columns is therefore essential for effective disaster prevention and control,making it a key research priority.Additionally,investigating the developmental characteristics of collapse columns is crucial for analyzing seepage instability mechanisms.In such a context,this paper provides a comprehensive review of four critical aspects:(1)The development characteristics and hydrogeological properties of collapse columns;(2)Fluid-solid coupling mechanisms under mining-induced stress;(3)Non-Darcy seepage behavior in fractured rock masses;(4)Flow regime transitions and mass variation effects.Key findings highlight the role of flow-solid coupling in governing the seepage mechanisms of fractured rock masses within karst collapse columns.By synthesizing numerous studies on flow pattern transitions,this paper outlines the complete seepage process-from groundwater movement within the aquifer to its migration through the collapse column and eventual inflow into mine roadways or working faces-along with the associated transformations in flow patterns.Furthermore,the seepage characteristics and water inrush behaviors influenced by particle migration are examined through both experimental and numerical simulation approaches. 展开更多
关键词 Karst collapse columns water inrush disasters seepage in fractured rock masses particle migration
在线阅读 下载PDF
Ultimate flexural strength of normal section of FRP-confined RC circular columns 被引量:2
3
作者 顾冬生 吴刚 吴智深 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期107-111,共5页
Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the lo... Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code. 展开更多
关键词 reinforced concrete(RC)circular columns flexural capacity of normal section fiber-reinforced polymer (FRP) CONFINEMENT
在线阅读 下载PDF
Seismic performance of RC square columns strengthened with self-compacting concrete-filled steel tubes
4
作者 Zhang Zhaoqiang Cao Yang +2 位作者 Sa Yanru Mu Huiyu Li Xiaowei 《Earthquake Engineering and Engineering Vibration》 2025年第3期763-779,共17页
The behavior of reinforced concrete(RC)square columns strengthened with self-compacting concrete(SCC)-filled steel tubes under cyclic loading was experimentally investigated.Tests were carried out on eleven reinforced... The behavior of reinforced concrete(RC)square columns strengthened with self-compacting concrete(SCC)-filled steel tubes under cyclic loading was experimentally investigated.Tests were carried out on eleven reinforced columns and one unreinforced column.The parameters studied for the strengthened columns included axial compression ratio,reinforcement rate,defect rate,strength of SCC,and the section form of a reinforced steel tube.The results show that the steel tube SCC reinforcement method can effectively strengthen RC columns,exert the restraint effect of steel tube,and delay the development of internal concrete cracks.The method can also significantly improve the bearing capacity of RC columns.Regarding ductility,the improvement of the reinforced column is obvious,the deformation resistance of the specimen is enhanced,and the degradation of stiffness and strength is relatively slow,indicating that it has good seismic performance. 展开更多
关键词 steel tube strengthening self-compacting concrete RC column seismic performance
在线阅读 下载PDF
State surveillance and fault diagnosis of distillation columns using residual network-based passive acoustic monitoring
5
作者 Haotian Zheng Zhixi Zhang +7 位作者 Guangyan Wang Yatao Wang Jun Liang Weiyi Su Yuqi Hu Xiong Yu Chunli Li Honghai Wang 《Chinese Journal of Chemical Engineering》 2025年第1期248-258,共11页
The operational state of distillation columns significantly impacts product quality and production efficiency.However,due to the complex operation and diverse influencing factors,ensuring the safety and efficient oper... The operational state of distillation columns significantly impacts product quality and production efficiency.However,due to the complex operation and diverse influencing factors,ensuring the safety and efficient operation of the distillation columns becomes paramount.This research combines passive acoustic monitoring with artificial intelligence techniques,proposed a technology based on residual network(ResNet),which involves the transformation of the acoustic signals emitted by three distillation columns under different operating states.The acoustic signals were initially in one-dimensional waveform format and then converted into two-dimensional Mel-Frequency Cepstral Coefficients spectrogram database using fast Fourier transform.Ultimately,this database was employed to train a ResNet for the purpose of identifying the operational states of the distillation columns.Through this approach,the operational states of distillation columns were monitored.Various faults,including flooding,entrainment,dry-tray,etc.,were diagnosed with an accuracy of 98.91%.Moreover,an intermediate transitional state between normal operation and fault was identified and accurately recognized by the proposed method.Under the transitional state,the acoustic signals achieved an accuracy of 97.85%on the ResNet,which enables early warnings before faults occur,enhancing the safety of chemical production processes.The approach presents a powerful tool for the monitoring and diagnosis of chemical equipment,particularly distillation columns,ensuring the safety and efficiency. 展开更多
关键词 DISTILLATION COLUMN Acoustic signal Neural network
在线阅读 下载PDF
Cyclic response of floating geosynthetic-encased steel slag columns in soft clay
6
作者 Kaiwen Liu Bailin Li +3 位作者 Yuangang Li M.Hesham El Naggar Tengfei Wang Ruizhe Qiu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1182-1193,共12页
Geosynthetic-encased stone column(GESC)technology for strengthening soft clay offers significant advantages in terms of cost-effectiveness,environmental sustainability,and engineering applicability.It is widely applie... Geosynthetic-encased stone column(GESC)technology for strengthening soft clay offers significant advantages in terms of cost-effectiveness,environmental sustainability,and engineering applicability.It is widely applied in treating soft foundations for railways,bridges,and embankments.This study evaluates the cyclic response of the geosynthetic-encased steel slag column(GESSC)composite foundation employing three-dimensional nonlinear finite element analysis.A numerical study is conducted to assess the cyclic response of floating GESSC considering the influence of key design variables,including cyclic load amplitude,loading frequency,geosynthetic encasement stiffness,and length-to-diameter ratio.Results show that both cyclic load amplitude and frequency affect the cumulative settlement and excess pore pressure within the GESSC foundation.Within specified limits,increasing the encasement stiffness and column length can significantly improve the GESSC load-bearing characteristics.The parametric study suggests an optimal geosynthetic encasement stiffness for the field prototype columns within the range of 4480–5760 kN/m and a critical steel slag column length of 10 times the column diameter. 展开更多
关键词 Steel slag column Soft clay Cyclic loading Numerical simulation GEOSYNTHETICS
在线阅读 下载PDF
Low-computational time and accurate classification of flow regimes in bubble columns for aquaculture aeration using probability density functions of bubble velocity standard deviation
7
作者 Natee Thong-Un Wongsakorn Wongsaroj +2 位作者 Jirayut Hansot Weerachon Treenuson Hiroshige Kikura 《Theoretical & Applied Mechanics Letters》 2025年第5期469-478,共10页
This study explores the combination of ultrasound technology with a detection algorithm to categorize flow regimes in bubble columns used for aeration in aquaculture.An ultrasonic velocity profiler is used to obtain t... This study explores the combination of ultrasound technology with a detection algorithm to categorize flow regimes in bubble columns used for aeration in aquaculture.An ultrasonic velocity profiler is used to obtain the standard deviation of the bubble velocity distributed throughout the column.The bubble velocity data for three known flow regimes were used to develop a probability density function(PDF)classification model.The experimental apparatus consisted of a circular tank equipped with a bubble generator and gas hold-up monitoring systems.The flow regimes of the experimental fluid were determined,and the classification was conducted via the PDF method.The results demonstrate that the classification accuracy is not lower than that of traditional machine learning methods. 展开更多
关键词 Aquaculture aeration Bubble column Bubble velocity standard deviation Flow regime Ultrasonic velocity profiler
在线阅读 下载PDF
Stochastic response of steel columns subjected to lateral blast based on modified single degree of freedom(MSDOF)method
8
作者 Mohammad Momeni Chiara Bedon +1 位作者 Mohammad Ali Hadianfard Sina Malekpour 《Resilient Cities and Structures》 2025年第1期1-15,共15页
This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(S... This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(SDOF)and the experimentally validated Finite Element(FE)methods(LSDYNA).For this purpose,special atten-tion is given to calculating the response of H-shaped steel columns under blast.The damage amount is determined based on the support rotation criterion,which is expressed as a function of their maximum lateral mid-span dis-placement.To account for uncertainties in input parameters and obtain the failure probability,the Monte Carlo simulation(MCS)method is employed,complemented by the Latin Hypercube Sampling(LHS)method to reduce the number of simulations.A parametric analysis is hence performed to examine the effect of several input pa-rameters(including both deterministic and probabilistic parameters)on the probability of column damage as a function of support rotation.First,the MSDOF method confirms its higher accuracy in estimating the probability of column damage due to blast,compared to the conventional SDOF.The collected results also show that un-certainties of several input parameters have significant effects on the column behavior.In particular,geometric parameters(including cross-sectional characteristics,boundary conditions and column length)have major effect on the corresponding column response,in the same way of input blast load parameters and material properties. 展开更多
关键词 Stochastic response Steel column Lateral blast UNCERTAINTY Modified single degree of freedom(MSDOF) METHOD Parametric analysis
在线阅读 下载PDF
Prediction of dispersed phase holdup in pulsed disc and doughnut solvent extraction columns under different mass transfer conditions 被引量:3
9
作者 Yong Wang Kathryn H.Smith +3 位作者 Kathryn Mumford Teobaldo F.Grabin Zheng Li Geoffrey W.Stevens 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第2期226-231,共6页
Using experimental data from a number of pulsed disc and doughnut solvent extraction columns, a unified correla- tion for the prediction of dispersed phase holdup that considers the effects of mass transfer is present... Using experimental data from a number of pulsed disc and doughnut solvent extraction columns, a unified correla- tion for the prediction of dispersed phase holdup that considers the effects of mass transfer is presented. Pulsed disc and doughnut solvent extraction columns (PDDC) have been used for a range of important applications such as ura- nium extraction and nuclear fuel recycling. Although the dispersed phase holdup in a PDDC has been presented by some researchers, there is still the need to develop a robust correlation that can predict the experimental dispersed phase holdup over a range of operating conditions including the effects of mass transfer direction. In this study, dis- persed phase holdup data from different literature sources for a PDDC were used to refit constants for the correlation presented by Kumar and Hartland lind. Eng. Chem. Res.,27 (1988),131-138] which did not consider the effect of col- umn geometry. In order to incorporate the characteristic length of the PDDC (i.e. the plate spacing), the unified cor- relation for holdup proposed by Kumar and Hartland based on data from eight different types of columns [Ind. Eng. Chem. Res.,34 (1995) 3925-3940] was refitted to the PDDC data. New constants have been presented for each hold- up correlation for a PDDC based on regression analysis using published holdup data from PDDCs that cover a range of onerating conditions and nhwical nronerties and consider the direction of mass transfer. 展开更多
关键词 Solvent extraction Liquid extraction Pulsed disc and doughnut columns Solvent extraction column design Holdup Dispersed phase holdup Hydrodynamics of extraction columns
在线阅读 下载PDF
Strength of circular concrete columns under concentric compression
10
作者 赵玲 李爱群 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期74-78,共5页
An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concret... An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns. 展开更多
关键词 columns high strength concrete hoop spacing concentric loading
在线阅读 下载PDF
Near Surface Mounted Application for the Strengthening of Rectangular Reinforced Concrete Slender Columns under Eccentric Load
11
作者 Emad El-Sayed Etman 《Journal of Civil Engineering and Architecture》 2010年第12期20-38,共19页
The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular colum... The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular columns are the targeted elements. This is why the data about slender columns with rectangular sections is limited and infrequent specially when loaded eccentrically. This paper aims to increase the available experimental data in this specific area. The experimental program consisted of twenty seven specimens. The specimens were divided into three groups; one control group and two groups strengthened using two strengthening schemes. Scheme 1 implied the use of near surface mounted (NSM) longitudinal steel bars, while in scheme 2, NSM longitudinal steel bars partially wrapped with one ply of carbon fibers reinforced polymers (CFRP) sheets was used. The test specimen had an overall length of 2000 mm and a 100 x 200 mm rectangular cross section. In addition to the strengthening schemes, the test parameters included three ratios for the internal longitudinal steel bars "μ" 1%, 1.57% and 2.26%. The parameters were extended to cover three stirrups' volumetric ratio "ρv" 0.73%, 0.49% and 0.37%. The specimens were tested under the effect of eccentric loading with eccentricity-to-section height e/h equals 0.25. The research revealed that the strength gain in specimens strengthened with scheme 2 was higher than with scheme 1. Analytical modeling of the stress strain relation of the strengthened RC columns considering the effect of strengthening scheme, internal reinforcement ratio μ, and stirrups' volumetric ratio "ρv" was proposed. Verification was made using available experimental data. The proposed model showed a reasonable agreement with the experimental results. 展开更多
关键词 Strengthening FRP NSM RC slender columns rectangular columns eccentric loads confinement.
在线阅读 下载PDF
Mechanical behaviors of steel reinforced ECC / concrete composite columns under combined vertical and horizontal loading 被引量:8
12
作者 单奇峰 潘金龙 陈俊涵 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期259-265,共7页
In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composit... In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application. 展开更多
关键词 engineered cementitious composites ECC ECC/RC composite columns compression-bending behavior numerical analysis parametric analysis
在线阅读 下载PDF
Experimental study on concrete columns hybrid reinforced by steel and FRP bars under seismic loading 被引量:1
13
作者 孙泽阳 吴刚 +1 位作者 王燕华 吴智深 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期439-444,共6页
In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordina... In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance. 展开更多
关键词 concrete column shaking table test hybrid reinforcement peak ground acceleration strain distribution
在线阅读 下载PDF
Experimental investigation on dynamic response and damage models of circular RC columns subjected to underwater explosions 被引量:8
14
作者 Tie-shuan Zhuang Ming-yang Wang +3 位作者 Jun Wu Cheng-yu Yang Tao Zhang Chao Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期856-875,共20页
Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock se... Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application. 展开更多
关键词 Underwater explosion Reinforced concrete(RC)columns Load distribution characteristics Dynamic response Damage models
在线阅读 下载PDF
Energy conversion and deposition behaviour in gravitational collapse of granular columns 被引量:7
15
作者 HUANG Bo-lin WANG Jian +2 位作者 ZHANG Quan LUO Chao-lin CHEN Xiao-ting 《Journal of Mountain Science》 SCIE CSCD 2020年第1期216-229,共14页
The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column c... The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results. 展开更多
关键词 Granular columns Rock collapse Collapse experiments Energy conversion Deposit sequence Deposit prediction
原文传递
Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading 被引量:9
16
作者 Pan Jinlong Mo Chuang +1 位作者 Xu Li Chen Junhan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期70-78,共9页
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col... To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures. 展开更多
关键词 engineered cementitious composites ECC) ECC/RC composite columns hysteretic curves DUCTILITY energy dissipation parametric analysis
在线阅读 下载PDF
Axial Bearing Capacity of Short FRP Confined Concrete-filled Steel Tubular Columns 被引量:7
17
作者 刘兰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期454-458,共5页
The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined wit... The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined with fiber-reinforced polymer (FRP) wraps. Totally 11 short column specimens were tested to failure under axial compression. The influences of the type and quantity of FRP, the thickness of steel tube and the concrete strength were studied. It was found that the bearing capacity of short FRP-CFST column was much higher than that of comparable CFST column. Furthermore, the formulas for calculating the bearing capacity of the FRP-CFST columns are proposed. The analytical calculated results agree well with the experimental results. 展开更多
关键词 columns concrete-filled steel tubes (CFST) fiber reinforced polymer (FRP) CONFINEMENT bearing capacity.
原文传递
Seismic strengthening of reinforced concrete columns damaged by rebar corrosion using combined CFRP and steel jacket 被引量:2
18
作者 李金波 贡金鑫 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期506-512,共7页
In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve... In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed. 展开更多
关键词 reinforced concrete column seismic performance CORROSION retrofitting steel jacket fiber-reinforced polymer (FRP) DUCTILITY
在线阅读 下载PDF
FE modeling of concrete beams and columns reinforced with FRP composites 被引量:4
19
作者 Farid Abed Chahmi Oucif +2 位作者 Yousef Awera Haya H.Mhanna Hakem Alkhraisha 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期1-14,共14页
Compression and flexure members such as columns and beams are critical in a structure as its failure could lead to the collapse of the structure.In the present work,numerical analysis of square and circle short column... Compression and flexure members such as columns and beams are critical in a structure as its failure could lead to the collapse of the structure.In the present work,numerical analysis of square and circle short columns,and reinforced concrete(RC)beams reinforced with fiber reinforced polymer composites are carried out.This work is divided into two parts.In the first part,numerical study of axial behavior of square and circular concrete columns reinforced with Glass Fiber Reinforced Polymer(GFRP)and Basalt Fiber Reinforced Polymer(BFRP)bars and spiral,and Carbon Fiber Reinforced Polymer(CFRP)wraps is conducted.The results of the first part showed that the axial capacity of the circular RC columns reinforced with GFRP increases with the increase of the longitudinal reinforcement ratio.In addition,the results of the numerical analysis showed good correlation with the experimental ones.An interaction diagram for BFRP RC columns is also developed with considering various eccentricities.The results of numerical modeling of RC columns strengthened with CFRP wraps revealed that the number and the spacing between the CFRP wraps provide different levels of ductility enhancement to the column.For the cases considered in this study,column with two middle closely spaced CFRP wraps demonstrated the best performance.In the second part of this research,flexural behavior of RC beams reinforced with BFRP,GFRP and CFRP bars is investigated along with validation of the numerical model with the experimental tests.The results resembled the experimental observations that indicate significant effect of the FRP bar diameter and type ont he flexural capacity of the RC beams.It was also shown that Increasing the number of bars while keeping the same reinforcement ratio enhanced the stiffness of the RC beam. 展开更多
关键词 Numerical analysis BRFP GFRP CFRP columns BEAMS Experimental tests
在线阅读 下载PDF
Reduction of structural response to near fault earthquakes by seismic isolation columns and variable friction dampers 被引量:5
20
作者 Y.Ribakov 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期113-122,共10页
This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes. The seismic isolation can be implemented... This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes. The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones. These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion. As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases. However, this positive effect is achieved on account of displacements occurring in the isolating columns. These displacements become very large when the structure is subjected to a strong earthquake. In this case, impact may occur between the parts of the isolating column yielding their damage or collapse. In order to limit the displacements in the isolating columns, it is proposed to add variable friction dampers. A method for selecting the dampers' properties is proposed. It is carried out using an artificial ground motion record and optimal active control algorithm. Numerical simulation of a sevenstory structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns. 展开更多
关键词 seismic isolating columns variable friction dampers hybrid seismic isolation near fault earthquakes control algorithm
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部