期刊文献+
共找到10,133篇文章
< 1 2 250 >
每页显示 20 50 100
Bayesian-based ant colony optimization algorithm for edge detection
1
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(ACO) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Design of high phase-sensitivity BlueP/TMDC heterostructure-based SPR biosensor using improved artificial bee colony algorithm
2
作者 Chong Yue Mantong Chen +1 位作者 Yaopu Lang Qinggang Liu 《Nanotechnology and Precision Engineering》 2025年第2期113-122,共10页
This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structu... This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structure,a double-layer Ag-Au metal film is combined with a blue phosphorene/transition metal dichalcogenide(BlueP/TMDC)hybrid structure and graphene.In the optimization function of the IABC method,the reflectivity at resonance angle is incorporated as a constraint to achieve high phase sensitivity.The performance of the Ag-Au-BlueP/TMDC-graphene heterostructure as optimized by the IABC method is compared with that of a similar structure optimized using the traditional ABC algorithm.The results indicate that optimization using the IABC method gives significantly more phase sensitivity,together with lower reflectivity,than can be achieved with the traditional ABC method.The highest phase sensitivity of 3.662×10^(6) °/RIU is achieved with a bilayer of BlueP/WS2 and three layers of graphene.Moreover,analysis of the electric field distribution demonstrates that the optimal arrangement can be utilized for enhanced detection of small biomolecules.Thus,given the exceptional sensitivity achieved,the proposed method based on the IABC algorithm has great promise for use in the design of high-performance SPR biosensors with a variety of multilayer structures. 展开更多
关键词 SPR Phase modulation Sensitivity Improved artificial bee colony algorithm BlueP/TMDC HETEROSTRUCTURE
在线阅读 下载PDF
基于ASCABC的并行DCNN优化算法
3
作者 胡健 周奇航 毛伊敏 《计算机工程与设计》 北大核心 2025年第4期983-989,共7页
针对大数据环境下并行DCNN存在冗余计算过多、收敛速度慢、参数寻优能力差以及中间数据倾斜等问题提出一种基于Spark和ASCABC的DCNN-SASCABC算法。提出基于冯诺依曼熵的FMC-VNE策略来对特征图进行压缩,降低冗余计算;提出基于自适应人工... 针对大数据环境下并行DCNN存在冗余计算过多、收敛速度慢、参数寻优能力差以及中间数据倾斜等问题提出一种基于Spark和ASCABC的DCNN-SASCABC算法。提出基于冯诺依曼熵的FMC-VNE策略来对特征图进行压缩,降低冗余计算;提出基于自适应人工蜂群算法的MPT-ASCABC策略进行参数初始化,提高DCNN收敛速度与参数寻优能力;提出中间数据分配策略BA-ID重分配中间数据,解决Spark中间数据倾斜的问题。实验结果表明,所提算法提高了大数据环境下模型训练效率。 展开更多
关键词 SPARK 大数据 并行DCNN 冗余数据 自适应人工蜂群算法 参数初始化 数据倾斜
在线阅读 下载PDF
基于时间序列与ABC-SVM的岩溶隧道衬砌受力预测
4
作者 张亚辉 宋玉香 徐强 《高速铁路技术》 2025年第4期18-26,34,共10页
岩溶隧道衬砌结构的受力特征显著复杂于普通隧道,若对其衬砌受力预测不足,将直接威胁隧道运营安全,甚至给人民生命财产带来巨大隐患。针对这一工程难题,本文充分考虑岩溶隧道围岩的流变特性,通过精确识别衬砌受力中的随机项,提高岩溶隧... 岩溶隧道衬砌结构的受力特征显著复杂于普通隧道,若对其衬砌受力预测不足,将直接威胁隧道运营安全,甚至给人民生命财产带来巨大隐患。针对这一工程难题,本文充分考虑岩溶隧道围岩的流变特性,通过精确识别衬砌受力中的随机项,提高岩溶隧道受力预测的精度。以郑万高速铁路黄家沟岩溶隧道典型断面为工程背景,基于60 d的隧道衬砌压力监测数据构建基础数据集,采用时间序列分析法建立隧道衬砌内力预测模型。首先利用3次样条函数插值法对非等距时序进行数据等距化处理,在此基础上分别运用支持向量机算法(SVM)和人工蜂群优化的支持向量机回归(ABC-SVR)模型开展预测分析,并将各模型的预测数据与实际监测数据进行对比验证。结果表明,针对岩溶隧道围岩流变特点开展的数据预处理,保障了原始数据变化规律的完整性;经时间序列优化后的ABC-SVR算法预测模型,能够精准反映岩溶隧道复杂的地质变化规律,其预测数据与实测数据吻合度高,预测精度达0.9997。本研究成果可为岩溶隧道的衬砌压力预测提供参考依据。 展开更多
关键词 岩溶隧道 衬砌压力 时间序列 人工蜂群 支持向量机回归(SVR)
在线阅读 下载PDF
医学实习生网络平台自主学习中的EABC算法研究
5
作者 马良 玛依拉·买买提 +2 位作者 热伊拉·吾斯曼 王艺 吐尔洪江·阿布都热西提 《微型电脑应用》 2025年第6期58-61,共4页
针对医学实习生网络平台自主学习中的资源调度问题,提出了一种基于极值个体引导的人工蜂群(EABC)算法。通过全新的极值个体引导方式提升计算精度和收敛方式,并设计了新的适应度函数,以此完成网络学习资源的最优调度。结果表明,在RVDS数... 针对医学实习生网络平台自主学习中的资源调度问题,提出了一种基于极值个体引导的人工蜂群(EABC)算法。通过全新的极值个体引导方式提升计算精度和收敛方式,并设计了新的适应度函数,以此完成网络学习资源的最优调度。结果表明,在RVDS数据集中,所提算法迭代至19次附近时损失函数最小,趋近于0,收敛速度较快。在某大型医科院校的实际应用中,所提算法完成学习资源调度的时间在20次左右开始平稳,最小值为0.30 s,具有较高的调度效率,为网络自主学习平台的进一步推广提供了新的参考思路。 展开更多
关键词 人工蜂群算法 医学 自主学习平台 极值优化
在线阅读 下载PDF
Planning of a Single Flow Channel in Valve Blocks Based on Additive Manufacturing and the Ant Colony Algorithm 被引量:2
6
作者 Jin Zhang Ziyang Li +3 位作者 Yuying Zhang Yandong Liu Ying Li Xiangdong Kong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期191-202,共12页
As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed... As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing. 展开更多
关键词 Hydraulic valve block Flow channel B-spline curve Additive manufacturing Ant colony algorithm
在线阅读 下载PDF
基于多策略的动态分群ABC算法
7
作者 张伟 张彦伟 《智能计算机与应用》 2025年第1期136-143,共8页
针对人工蜂群算法开发能力差,探索和开发之间存在不平衡的缺点,本文提出了一种基于多策略的动态分群人工蜂群算法(Multi-Strategy Dynamic Clustering Artificial Bee Colony algorithm,MSDCABC)。首先,采用适应度排序和随机分组策略进... 针对人工蜂群算法开发能力差,探索和开发之间存在不平衡的缺点,本文提出了一种基于多策略的动态分群人工蜂群算法(Multi-Strategy Dynamic Clustering Artificial Bee Colony algorithm,MSDCABC)。首先,采用适应度排序和随机分组策略进行种群划分,使其可以同时搜索不同的区域;其次,在搜索过程中结合动态子群策略,根据适应度大小对优秀子群中的个体进行更新,不同普通子群间根据其搜索策略的成功率竞争产生后代,动态调整各普通子群间的种群数量;最后,运用多策略选取机制对各个子群设计不同的搜索策略,通过加强优秀子群的引导作用,增加普通子群在探索和开发上的多样性,实现算法在探索与开发之间的平衡。9个基准测试函数的仿真实验结果表明,与其他改进算法对比,本文所提改进算法具有较高的收敛精度和较强的搜索能力。 展开更多
关键词 人工蜂群算法 多策略 种群划分 动态子群
在线阅读 下载PDF
Improved artificial bee colony algorithm for pressure source parameter inversion of Sakurajima volcano from InSAR data 被引量:1
8
作者 Leyang Wang Linghui Xie Can Xi 《Geodesy and Geodynamics》 EI CSCD 2024年第6期635-641,共7页
A novel artificial bee colony algorithm was introduced for the eruption event of the Sakurajima volcano on August 9,2020,to invert the magma source characteristics below the volcano based on the point source Mogi mode... A novel artificial bee colony algorithm was introduced for the eruption event of the Sakurajima volcano on August 9,2020,to invert the magma source characteristics below the volcano based on the point source Mogi model.Considering that the Sakurajima volcano is surrounded by sea,all the deformation data are used to obtain the location and magma eruption volume of the volcano.In response to the weak local search capability of the artificial swarm algorithm,the difference between the global optimal individual and the un-roulette screened individual is introduced as the variance component in the onlooker stage.Detailed simulation experiments verify the improvement of the algorithm in terms of convergence speed.In real experiments,the Sakurajima volcano inversion shows closer fitting results and smaller residuals compared to the existing literature.Meanwhile,the convergence speed of the algorithm echoes with the simulation experiments. 展开更多
关键词 Sakurajima volcano D-INSAR Mogi model Artificial bee colony algorithm
原文传递
Tower crane path planning based on improved ant colony algorithm 被引量:1
9
作者 HE Yumin HU Xiangyang +3 位作者 ZHANG Jinhua YAO Shipeng LIU Difang MEN Xinyan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期509-517,共9页
In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion mode... In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion model was established to solve the forward and inverse kinematic equations.Secondly,the traditional ant colony algorithm was improved.The heuristic function was improved by introducing the distance between the optional nodes and the target point into the function.Then the transition probability was improved by introducing the security factor of surrounding points into the transition probability.In addition,the local path chunking strategy was used to optimize the local multi-inflection path and reduce the local redundant inflection points.Finally,according to the position of the hook,the kinematic inversion of the tower crane was carried out,and the variables of each joint were obtained.More specifically,compared with the traditional ant colony algorithm,the simulation results showed that improved ant colony algorithm converged faster,shortened the optimal path length,and optimized the path quality in the simple and complex environment. 展开更多
关键词 tower crane ant colony algorithm transition probability local path chunking strategy path planning
在线阅读 下载PDF
基于ABC-LSTM模型的锂离子电池剩余使用寿命预测 被引量:2
10
作者 刘勇 于怀汶 +3 位作者 刘大鹏 穆勇 王瀛洲 张秀宇 《储能科学与技术》 北大核心 2025年第1期331-345,共15页
为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,L... 为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,LSTM)相结合的综合预测模型,可有效提高锂离子电池RUL预测的准确性。首先,利用dropout正则化方法有效减轻过拟合现象的优势,提高预测模型的泛化能力。其次,引入针对容量回升及数据噪声问题的激活层网络结构,显著提升模型对复杂非线性数据的处理能力。然后,结合ABC算法优化LSTM综合预测模型的超参数,避免模型陷入局部最优解,提高RUL预测精度。最后,通过NASA研究中心及CALCE的公开数据集验证所提模型的预测准确性和鲁棒性。本工作对基于40%和60%训练数据的不同算法预测性能进行实验分析验证,并与麻雀优化算法、座头鲸优化算法等群体优化算法进行比较。实验结果表明,所提出的ABC-LSTM综合预测模型可以更加准确地捕获锂离子电池容量退化的全局趋势及局部特征,其中60%比例的RUL预测结果的均方根误差平均保持在1.02%以内,平均绝对误差平均保持在0.86%以内,拟合系数高达97%以上。 展开更多
关键词 锂离子电池 剩余使用寿命预测 长短期记忆网络 人工蜂群算法 dropout技术
在线阅读 下载PDF
An Improved Image Steganography Security and Capacity Using Ant Colony Algorithm Optimization
11
作者 Zinah Khalid Jasim Jasim Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第9期4643-4662,共20页
This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,shoul... This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness. 展开更多
关键词 STEGANOGRAPHY STEGANALYSIS capacity optimization ant colony algorithm
在线阅读 下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
12
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 Multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
在线阅读 下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
13
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
在线阅读 下载PDF
Optimal Location and Sizing ofMulti-Resource Distributed Generator Based onMulti-Objective Artificial Bee Colony Algorithm
14
作者 Qiangfei Cao Huilai Wang +1 位作者 Zijia Hui Lingyun Chen 《Energy Engineering》 EI 2024年第2期499-521,共23页
Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in t... Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability. 展开更多
关键词 Distributed generation distribution network life cycle cost multi-objective artificial bee colony algorithm voltage stability
在线阅读 下载PDF
基于ABC-BP神经网络的飞机防滑刹车系统故障诊断
15
作者 王强 娄华语 +4 位作者 周国强 吴伟 马长胜 邱荣贤 王良模 《江苏大学学报(自然科学版)》 北大核心 2025年第6期699-704,共6页
针对某飞机防滑刹车系统故障试验的复杂性、危险性以及试验成本高的问题,提出基于人工蜂群算法(ABC)优化BP神经网络的飞机防滑刹车系统故障诊断方法.基于MATLAB/Simulink软件,建立由机体动力学模型、机轮转动模型、电液伺服阀和刹车装... 针对某飞机防滑刹车系统故障试验的复杂性、危险性以及试验成本高的问题,提出基于人工蜂群算法(ABC)优化BP神经网络的飞机防滑刹车系统故障诊断方法.基于MATLAB/Simulink软件,建立由机体动力学模型、机轮转动模型、电液伺服阀和刹车装置模型等组成的飞机防滑刹车系统仿真模型;确定电液伺服阀和轮速传感器典型故障模式,建立故障注入模块;通过轮速传感器和电液伺服阀的典型故障仿真模拟,得到故障数据样本.采用滑动窗口裁剪的方法对样本进行数据增强,建立故障数据集;采用优化前后的BP神经网络进行飞机防滑刹车系统的故障诊断.结果表明:采用ABC算法对BP神经网络优化后的系统平均故障诊断准确率为95.4%(优化前为92.7%),湿跑道传感器故障诊断的准确率为83.9%(优化前为74.5%),可见通过优化有效提升了飞机防滑刹车系统故障诊断准确率. 展开更多
关键词 飞机防滑刹车系统 故障诊断 故障注入 BP神经网络 数据增强 人工蜂群算法
在线阅读 下载PDF
基于IABC-GA的管路协同机舱设备布局优化方法研究
16
作者 王文双 杨远松 +2 位作者 刘海洋 杨明君 林焰 《大连理工大学学报》 CAS 北大核心 2025年第1期67-78,共12页
为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径... 为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径寻优的改进算法,结合协同进化思想,将船舶机舱整体布局优化问题拆解为互相关联的设备布局问题和管路布局问题,两者在相互影响的情况下协同进化,最终得到最佳的船舶机舱布局设计方案.通过对实船机舱的仿真实验,验证了管路协同设备布局优化方法的可行性与可靠性.设备布局方面,与原始设备布局相比效果提升59.5%;船舶机舱整体布局方面,与先进行设备布局优化再进行管路布局优化相比效果提升11.8%. 展开更多
关键词 改进人工蜂群遗传算法(Iabc-GA) 船舶机舱 设备布局优化 协同进化
在线阅读 下载PDF
基于和声算法和ABC算法的绿色智慧交通运行调整控制方法研究 被引量:1
17
作者 刘曙生 李霞 +2 位作者 严凯 梁静 黎世恒 《自动化与仪器仪表》 2025年第5期63-67,共5页
列车已经成为人民的主要出行方式,但对复杂铁路网中的列车进行运行调整依然存在调控不充分和节能减排等问题。因此,研究提出了基于和声算法和人工蜂群算法的列车协同调控优化模型。该模型采用列车运行调整和运行控制作为目标函数,并对... 列车已经成为人民的主要出行方式,但对复杂铁路网中的列车进行运行调整依然存在调控不充分和节能减排等问题。因此,研究提出了基于和声算法和人工蜂群算法的列车协同调控优化模型。该模型采用列车运行调整和运行控制作为目标函数,并对其进行线性加权,同时利用邻域扰动改进和声算法,引入交叉操作和高斯变异优化人工蜂群算法。实验表明,改进和声算法的最大奖励值比其他算法高出67和82,改进人工蜂群算法最大奖励值比其他两种算法高出38以及54。组合算法的最大节能效率为9.8%,分别比其他两种算法高出2.9%以及2.5%。列车晚点出发时,通过调整区间运行速度,最终能够准时到达。同向列车之间的距离始终保持在6 km以上,能够保持安全距离和最小安全追踪间隔。由此可得,组合算法能够有效提升列车调度效率,降低列车运行能耗,促进列车安全绿色运行。 展开更多
关键词 和声算法 abc算法 智慧交通 运行调控 协同优化
原文传递
基于ABC分类法的机电产品数字仓储储配优化模型 被引量:1
18
作者 朱宝昌 钱乐平 +3 位作者 钟锁铭 徐松屹 任杰 周晓静 《机电工程》 北大核心 2025年第7期1350-1357,共8页
目前,我国中小企业数字化仓储的覆盖率仍然不高,除了数字化仓储前期投入成本较高外,缺乏较为实用便捷的储配优化算法支撑也是主要原因之一。现有算法通常对存储、配送环节分别开展了优化研究,并没有做到协同优化。针对上述问题,对机电... 目前,我国中小企业数字化仓储的覆盖率仍然不高,除了数字化仓储前期投入成本较高外,缺乏较为实用便捷的储配优化算法支撑也是主要原因之一。现有算法通常对存储、配送环节分别开展了优化研究,并没有做到协同优化。针对上述问题,对机电产品数字仓储的储配优化进行了研究,提出了一种基于ABC分类法的机电产品数字仓储储配优化模型。首先,基于实际仓储物流所需,论述了数字化仓储对于企业降本增效的支撑作用;然后,结合某机电企业成品库数据,建立了基于ABC分类法的储配优化模型;最后,根据实际数据,开展了储配模型优化前后的对比分析。研究结果表明:优化后的分类随机存储方式相比于现有随机存储方式,在总出库距离上减少了27.19%;同时,基于现金流最大化思想的安全库存优化模型相比于优化前,现金流提高了10.6%,实现了降本增效的管理目标;该优化模型及算法较为简便实用,能够为企业储配环节优化提升提供借鉴。在此基础上,继续优化该储配模型,可将应用领域扩展至机电产品仓库以外其他行业,为更多行业的数字化仓储提供优化支撑。 展开更多
关键词 机电产品数字仓储 数字化仓储系统 储配协同 安全库存 储配优化算法 abc分类法
在线阅读 下载PDF
基于FWA及ABC的冷链物流配送路径优化模型 被引量:1
19
作者 戴萍 《贵阳学院学报(自然科学版)》 2025年第1期53-58,共6页
针对现有冷链物流多采用纸质单据和手工录入,依靠人工配送、缺乏信息化,从而造成冷链物流配送效率低下,容易出现运输路径错误等问题,提出采用人工蜂群算法来构建冷链物流的配送模型,并在此基础上引入烟花爆炸算法与k领域策略进行改进,... 针对现有冷链物流多采用纸质单据和手工录入,依靠人工配送、缺乏信息化,从而造成冷链物流配送效率低下,容易出现运输路径错误等问题,提出采用人工蜂群算法来构建冷链物流的配送模型,并在此基础上引入烟花爆炸算法与k领域策略进行改进,构建出优化模型。实验结果发现,优化后的模型在Sphere Function函数上的最优值为0.00E+00,平均值为2.13E-97,标准差为4.85E-96。在Ackley’s Function函数上分别为5.94E-13,5.25E-08,7.45E-09。此外,在实例验证中,该模型所提供路径的总成本最低。综合表明,该模型能对冷链物流配送路径进行良好优化。 展开更多
关键词 冷链物流 人工蜂群算法 烟花爆炸算法 k邻域 路径优化
在线阅读 下载PDF
An Adaptive Firefly Algorithm for Dependent Task Scheduling in IoT-Fog Computing
20
作者 Adil Yousif 《Computer Modeling in Engineering & Sciences》 2025年第3期2869-2892,共24页
The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation ... The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers.The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem.This study proposes an Adaptive Firefly Algorithm(AFA)for dependent task scheduling in IoT-Fog computing.The proposed AFA is a modified version of the standard Firefly Algorithm(FA),considering the execution times of the submitted tasks,the impact of synchronization requirements,and the communication time between dependent tasks.As IoT-Fog computing depends mainly on distributed fog node servers that receive tasks in a dynamic manner,tackling the communications and synchronization issues between dependent tasks is becoming a challenging problem.The proposed AFA aims to address the dynamic nature of IoT-Fog computing environments.The proposed AFA mechanism considers a dynamic light absorption coefficient to control the decrease in attractiveness over iterations.The proposed AFA mechanism performance was benchmarked against the standard Firefly Algorithm(FA),Puma Optimizer(PO),Genetic Algorithm(GA),and Ant Colony Optimization(ACO)through simulations under light,typical,and heavy workload scenarios.In heavy workloads,the proposed AFA mechanism obtained the shortest average execution time,968.98 ms compared to 970.96,1352.87,1247.28,and 1773.62 of FA,PO,GA,and ACO,respectively.The simulation results demonstrate the proposed AFA’s ability to rapidly converge to optimal solutions,emphasizing its adaptability and efficiency in typical and heavy workloads. 展开更多
关键词 Fog computing SCHEDULING resource management firefly algorithm genetic algorithm ant colony optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部