A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
Magnetocardiography(MCG)measurement is important for investigating the cardiac biological activities.Traditionally,the extremely weak MCG signal was detected by using superconducting quantum interference devices(SQUID...Magnetocardiography(MCG)measurement is important for investigating the cardiac biological activities.Traditionally,the extremely weak MCG signal was detected by using superconducting quantum interference devices(SQUIDs).As a room-temperature magnetic-field sensor,optically pumped magnetometer(OPM)has shown to have comparable sensitivity to that of SQUIDs,which is very suitable for biomagnetic measurements.In this paper,a synthetic gradiometer was constructed by using two OPMs under spin-exchange relaxation-free(SERF)conditions within a moderate magnetically shielded room(MSR).The magnetic noise of the OPM was measured to less than 70 fT/Hz1/2.Under a baseline of 100 mm,noise cancellation of about 30 dB was achieved.MCG was successfully measured with a signal to noise ratio(SNR)of about 37 dB.The synthetic gradiometer technique was very effective to suppress the residual environmental fields,demonstrating the OPM gradiometer technique for highly cost-effective biomagnetic measurements.展开更多
A dual-washer superconducting quantum interference device (SQUID) with a loop inductance of 350 pH and two on- washer integrated input coils is designed according to conventional niobium technology. In order to obta...A dual-washer superconducting quantum interference device (SQUID) with a loop inductance of 350 pH and two on- washer integrated input coils is designed according to conventional niobium technology. In order to obtain a large SQUID flux-to-voltage transfer coefficient, the junction shunt resistance is selected to be 33 Ω. A vertical SQUID gradiometer module with a baseline of 100 mm is constructed by utilizing such a SQUID and a first-order niobium wire-wound antenna. The sensitivity of this module reaches about 0.2 fT/(cm.Hz1/2) in the white noise range using a direct readout scheme, i.e., the SQUID is directly connected to an operational amplifier, in a magnetically shielded room. Some magnetocardiography (MCG) measurements with a sufficiently high signal-to-noise ratio (SNR) are demonstrated.展开更多
SQUID gradiometer techniques are widely used in noise cancellation for biomagnetic measurements.An appropriate gradiometer baseline is very important for the biomagnetic detection with high performance.By placing seve...SQUID gradiometer techniques are widely used in noise cancellation for biomagnetic measurements.An appropriate gradiometer baseline is very important for the biomagnetic detection with high performance.By placing several magnetometers at different heights along the vertical direction,we could simultaneously obtain the synthetic gradiometers with different baselines.By using the traditional signal-to-noise ratio(SNR) as a performance index,we successfully obtain an optimal baseline for the magnetocardiography(MCG) measurement in a magnetically shielded room(MSR).Finally,we obtain an optimal baseline of 7 cm and use it for the practical MCG measurement in our MSR.The SNR about 38 dB is obtained in the recorded MCG signal.展开更多
This paper reports the fabrication and test of a high-Tc SQUID planar gradiometer which is patterned from YBCO thin film deposited on a SrTiO3 bicrystal substrate. The measurement of noise spectrum at 77K shows that t...This paper reports the fabrication and test of a high-Tc SQUID planar gradiometer which is patterned from YBCO thin film deposited on a SrTiO3 bicrystal substrate. The measurement of noise spectrum at 77K shows that the white noise at 200 Hz is about 1×10^-4 φ0/√Hz. The minimal magnetic gradient is measured and the results suggest that the minimal magnetic gradient is 94 pT/m. The planar gradiometer is used in non-destructive evaluation (NDE) experiments to detect the artifacts in conducting aluminium plates by performing eddy current testing in an unshielded environment. The effect of the exciting coil dimension on the NDE results is investigated. By mapping out the induced field distribution, flaws about 10mm below the plate surface can be clearly identified.展开更多
Newton's gravitational constant G is the least known fundamental constant of nature. Since Cavendish made the first measurement of G with a torsion balance over two hundred years ago, the best results of G have been ...Newton's gravitational constant G is the least known fundamental constant of nature. Since Cavendish made the first measurement of G with a torsion balance over two hundred years ago, the best results of G have been obtained by using torsion balances. However, the uncorrected anelasticity of torsion fibers makes the results questionable. We present a new method of G measurement by using a superconducting gravity gradiometer constructed with levitated test masses, which is free from the irregularities of mechanical suspension. The superconducting gravity gradiometer is rotated to generate a centrifugal acceleration that nulls the gravity field of the source mass, forming an artificial planetary system. This experiment has a potential accuracy of G better than 10 ppm.展开更多
The performance of a superconducting quantum interference device(SQUID)gradiometer is always determined by its pick-up coil geometry,such as baseline and radius.In this paper,based on the expressions for the coupled f...The performance of a superconducting quantum interference device(SQUID)gradiometer is always determined by its pick-up coil geometry,such as baseline and radius.In this paper,based on the expressions for the coupled flux threading a magnetometer obtained by Wikswo,we studied how the gradiometer performance parameters,including the current dipole sensitivity,spatial resolution and signal-to-noise ratio(SNR),are affected by its pick-up coil via Mat Lab simulation.Depending on the simulation results,the optimal pick-up coil design region for a certain gradiometer can be obtained.To verify the simulation results,we designed and fabricated several first-order gradiometers based on the weakly damped SQUID with different pick-up coils by applying superconducting connection.The experimental measurements were conducted on a simple current dipole in a magnetically shielding room.The measurement results are well in coincidence with the simulation ones,indicating that the simulation model is useful in specific pick-up coil design.展开更多
The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tian...The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tiangong Space Station launched for long-term Earth science research not only reduces the cost compared to a dual-satellite constellation but also enhances interdisciplinary collaboration in the Earth's gravity field detection.In this study,we conducted gravity gradient-based simulations to assess the contribution of deploying a CAI gradiometer on the Tiangong Space Station to collaboratively observe the Earth's gravity field with a polar-orbit gravity satellite.The simulation results demonstrate that whether utilizing V_(yy) component,three diagonal components or full components,the derived gravity field models show significant improvements within 100 degree and above 200 degree after incorporating Tiangong Space Station.In particular,the gravity field solution recovered from three diagonal components achieves the best accuracy.In the case of using diagonal components,the collaboration observation scheme effectively reduced the cumulative geoid height error by approximately 5.3 cm(300 d/o).In the spatial domain,the incorporation of the Tiangong Space Station primarily impacts the estimated gravity field within the orbital coverage area of the space station,and this effect is particularly pronounced when just employing V_(yy) component.However,due to the limitation of angular velocity observation inaccuracy associated with the CAI gradiometer in nadir mode,there is no substantial accuracy improvement observed above 200 degree when adding gradient components.展开更多
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
基金Project supported by the National Natural Science Foundation of China(Grant No.61701486)。
文摘Magnetocardiography(MCG)measurement is important for investigating the cardiac biological activities.Traditionally,the extremely weak MCG signal was detected by using superconducting quantum interference devices(SQUIDs).As a room-temperature magnetic-field sensor,optically pumped magnetometer(OPM)has shown to have comparable sensitivity to that of SQUIDs,which is very suitable for biomagnetic measurements.In this paper,a synthetic gradiometer was constructed by using two OPMs under spin-exchange relaxation-free(SERF)conditions within a moderate magnetically shielded room(MSR).The magnetic noise of the OPM was measured to less than 70 fT/Hz1/2.Under a baseline of 100 mm,noise cancellation of about 30 dB was achieved.MCG was successfully measured with a signal to noise ratio(SNR)of about 37 dB.The synthetic gradiometer technique was very effective to suppress the residual environmental fields,demonstrating the OPM gradiometer technique for highly cost-effective biomagnetic measurements.
基金Project supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.KGCX2-EW-105)the "100 Talents Project" of the Chinese Academy of Sciences and Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04020200)
文摘A dual-washer superconducting quantum interference device (SQUID) with a loop inductance of 350 pH and two on- washer integrated input coils is designed according to conventional niobium technology. In order to obtain a large SQUID flux-to-voltage transfer coefficient, the junction shunt resistance is selected to be 33 Ω. A vertical SQUID gradiometer module with a baseline of 100 mm is constructed by utilizing such a SQUID and a first-order niobium wire-wound antenna. The sensitivity of this module reaches about 0.2 fT/(cm.Hz1/2) in the white noise range using a direct readout scheme, i.e., the SQUID is directly connected to an operational amplifier, in a magnetically shielded room. Some magnetocardiography (MCG) measurements with a sufficiently high signal-to-noise ratio (SNR) are demonstrated.
基金supported by the "Strategic Priority Research Program(B)"of the Chinese Academy of Sciences(Grant No.XDB04020200)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KGCX2-EW-105)
文摘SQUID gradiometer techniques are widely used in noise cancellation for biomagnetic measurements.An appropriate gradiometer baseline is very important for the biomagnetic detection with high performance.By placing several magnetometers at different heights along the vertical direction,we could simultaneously obtain the synthetic gradiometers with different baselines.By using the traditional signal-to-noise ratio(SNR) as a performance index,we successfully obtain an optimal baseline for the magnetocardiography(MCG) measurement in a magnetically shielded room(MSR).Finally,we obtain an optimal baseline of 7 cm and use it for the practical MCG measurement in our MSR.The SNR about 38 dB is obtained in the recorded MCG signal.
基金Project supported by Ministry of Science and Technology of China (Grant Nos 2006CB601007 and 2002AA306412 ), National Nature Science Foundation of China (Grant No 10221002) and Chinese Academy of Sciences and National Center for Nanoscience and Technology, China.
文摘This paper reports the fabrication and test of a high-Tc SQUID planar gradiometer which is patterned from YBCO thin film deposited on a SrTiO3 bicrystal substrate. The measurement of noise spectrum at 77K shows that the white noise at 200 Hz is about 1×10^-4 φ0/√Hz. The minimal magnetic gradient is measured and the results suggest that the minimal magnetic gradient is 94 pT/m. The planar gradiometer is used in non-destructive evaluation (NDE) experiments to detect the artifacts in conducting aluminium plates by performing eddy current testing in an unshielded environment. The effect of the exciting coil dimension on the NDE results is investigated. By mapping out the induced field distribution, flaws about 10mm below the plate surface can be clearly identified.
文摘Newton's gravitational constant G is the least known fundamental constant of nature. Since Cavendish made the first measurement of G with a torsion balance over two hundred years ago, the best results of G have been obtained by using torsion balances. However, the uncorrected anelasticity of torsion fibers makes the results questionable. We present a new method of G measurement by using a superconducting gravity gradiometer constructed with levitated test masses, which is free from the irregularities of mechanical suspension. The superconducting gravity gradiometer is rotated to generate a centrifugal acceleration that nulls the gravity field of the source mass, forming an artificial planetary system. This experiment has a potential accuracy of G better than 10 ppm.
基金Project supported by the Key Project of Shanghai Zhangjiang National Innovation Demonstration Zone of the Special Development Fund,China(Grant No.2015-JD-C104-060)the National Natural Science Foundation of China(Grant No.61741122)
文摘The performance of a superconducting quantum interference device(SQUID)gradiometer is always determined by its pick-up coil geometry,such as baseline and radius.In this paper,based on the expressions for the coupled flux threading a magnetometer obtained by Wikswo,we studied how the gradiometer performance parameters,including the current dipole sensitivity,spatial resolution and signal-to-noise ratio(SNR),are affected by its pick-up coil via Mat Lab simulation.Depending on the simulation results,the optimal pick-up coil design region for a certain gradiometer can be obtained.To verify the simulation results,we designed and fabricated several first-order gradiometers based on the weakly damped SQUID with different pick-up coils by applying superconducting connection.The experimental measurements were conducted on a simple current dipole in a magnetically shielding room.The measurement results are well in coincidence with the simulation ones,indicating that the simulation model is useful in specific pick-up coil design.
基金National Key R&D Program of China(2021YFB3900101)the National Natural Science Foundation of China(42174099 and 42192532)It is also partly supported by the Fundamental Research Funds for the Central Universities.
文摘The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tiangong Space Station launched for long-term Earth science research not only reduces the cost compared to a dual-satellite constellation but also enhances interdisciplinary collaboration in the Earth's gravity field detection.In this study,we conducted gravity gradient-based simulations to assess the contribution of deploying a CAI gradiometer on the Tiangong Space Station to collaboratively observe the Earth's gravity field with a polar-orbit gravity satellite.The simulation results demonstrate that whether utilizing V_(yy) component,three diagonal components or full components,the derived gravity field models show significant improvements within 100 degree and above 200 degree after incorporating Tiangong Space Station.In particular,the gravity field solution recovered from three diagonal components achieves the best accuracy.In the case of using diagonal components,the collaboration observation scheme effectively reduced the cumulative geoid height error by approximately 5.3 cm(300 d/o).In the spatial domain,the incorporation of the Tiangong Space Station primarily impacts the estimated gravity field within the orbital coverage area of the space station,and this effect is particularly pronounced when just employing V_(yy) component.However,due to the limitation of angular velocity observation inaccuracy associated with the CAI gradiometer in nadir mode,there is no substantial accuracy improvement observed above 200 degree when adding gradient components.