The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium boroh...The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium borohydride is investigated. Practically, the target application is mobile fuel cells based on hydrogen production from storage in chemical hydrides. The LNCT would be used as a one step purification method with less cost and space requirements instead of applying the conventional purification techniques. Two catalysts were investigated for the production of hydrogen from the aqueous solution of NaBH4 in a small scale packed bed reaction column. The hydrogen generated from the catalytic decomposition of NaBH4 was accompanied by limited quantity of water vapour and alkaline mist. Nonetheless, higher quantities were generated when applying the acidic decomposition of NaBH4 and consequently the utilization of LNCT for H2 purification has proved useful and lead to a reduction in the content of these impurities; thereby the concentration of hydrogen in the outlet stream has increased.展开更多
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure...We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.展开更多
The fidelity of the generated Schrodinger Cat state (SCS) of a single trapped ion in the Lamb-Dicke approximation is discussed. The results show that the fidelity significantly decreases with the values of Lamb-Dick...The fidelity of the generated Schrodinger Cat state (SCS) of a single trapped ion in the Lamb-Dicke approximation is discussed. The results show that the fidelity significantly decreases with the values of Lamb-Dicke parameter η and coherent state amplitude α increasing. For η= 0.20 and α = 3, the typical values of experimental parameters, the fidelity is rather low (3070). A scheme for generating the SCS is proposed without making the Lamb-Dike approximation in laser-ion interaction, and the fidelity of the generated SCS is about 99% for the typical values of experimental Lamb- Dicke parameters.展开更多
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 ×...We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.展开更多
We propose a novel scheme in which cold polar molecules are trapped by an electrostatic field generated by the combination of a pair of parallel transparent electrodes (i.e., two infinite transparent plates) and a r...We propose a novel scheme in which cold polar molecules are trapped by an electrostatic field generated by the combination of a pair of parallel transparent electrodes (i.e., two infinite transparent plates) and a ring electrode (i.e., a ring wire). The spatial distributions of the electrostatic fields from the above charged wire and the charged plates and the corresponding Stark potentials for cold CO molecules are calculated; the dependences of the trap centre position on the geometric parameters of the electrode are analysed. We also discuss the loading process of cold molecules from a cold molecular beam into our trap. This study shows that the proposed scheme is not only simple and convenient to trap, manipulate and control cold polar molecules in weak-field-seeking states, but also provides an opportunity to study cold collisions and collective quantum effects in a variety of cold molecular systems, etc.展开更多
Two methods of absorption imaging to detect cold atoms in a magnetic trap are implemented for a high-precision cold atom interferometer.In the first method,a probe laser which is in resonance with a cycle transition f...Two methods of absorption imaging to detect cold atoms in a magnetic trap are implemented for a high-precision cold atom interferometer.In the first method,a probe laser which is in resonance with a cycle transition frequency is used to evaluate the quantity and distribution of the atom sample.In the second method,the probe laser is tuned to an open transition frequency,which stimulates a few and constant number of photons per atom.This method has a shorter interaction time and results in absorption images which are not affected by the magnetic field and the light field.We make a comparison of performance between these two imaging methods in the sense of parameters such as pulse duration,light intensity,and magnetic field strength.The experimental results show that the second method is more reliable when detecting the quantity and density profiles of the atoms.These results fit well to the theoretical analysis.展开更多
In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and t...In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and the density of the atoms is increased to 5.6 × 1011 cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15. The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately. The experimental results are analyzed by using the perturbative quantum approach.展开更多
We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,us...We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam.With the independent pushing beam,the atomic flux can be substantially optimized.The total atomic flux maximum obtained in the 2D-HP MOT is4.02 × 1010atoms/s,increased by 60 percent compared to the traditional 2D+MOT in our experiment.Moreover,with the pushing power 10 μW and detuning 0Γ,the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20.The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s.The dependences of the atomic flux on the pushing power and detuning are studied in detail.The experimental results are in good agreement with the theoretical model.展开更多
By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam...By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam electrons with immobile neutralized positive ions. Numerical analyses have identified that EA waves with a sufficiently large amplitude tend to trap cold electrons. Because EA waves are dispersive, where the wave modes with different wavenumbers have different phase velocities, the trapping may lead to the mixing of cold electrons. The cold electrons finally get thermalized or heated. The investigation also shows that the excited EA waves give rise to a broad range of wave frequencies, which may be helpful for understanding the broadband-electrostatic-noise spectrum in the Earth’s auroral region.展开更多
文摘The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium borohydride is investigated. Practically, the target application is mobile fuel cells based on hydrogen production from storage in chemical hydrides. The LNCT would be used as a one step purification method with less cost and space requirements instead of applying the conventional purification techniques. Two catalysts were investigated for the production of hydrogen from the aqueous solution of NaBH4 in a small scale packed bed reaction column. The hydrogen generated from the catalytic decomposition of NaBH4 was accompanied by limited quantity of water vapour and alkaline mist. Nonetheless, higher quantities were generated when applying the acidic decomposition of NaBH4 and consequently the utilization of LNCT for H2 purification has proved useful and lead to a reduction in the content of these impurities; thereby the concentration of hydrogen in the outlet stream has increased.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10674047,10804031,10904037,10904060,10974055,11034002,and61205198)the National Key Basic Research and Development Program of China(Grant Nos.2006CB921604 and 2011CB921602)+2 种基金the Basic Key Program of Shanghai Municipality,China(Grant No.07JC14017)the Fundamental Research Funds for the Central Universitiesthe Shanghai Leading Academic Discipline Project,China(Grant No.B408)
文摘We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.
文摘The fidelity of the generated Schrodinger Cat state (SCS) of a single trapped ion in the Lamb-Dicke approximation is discussed. The results show that the fidelity significantly decreases with the values of Lamb-Dicke parameter η and coherent state amplitude α increasing. For η= 0.20 and α = 3, the typical values of experimental parameters, the fidelity is rather low (3070). A scheme for generating the SCS is proposed without making the Lamb-Dike approximation in laser-ion interaction, and the fidelity of the generated SCS is about 99% for the typical values of experimental Lamb- Dicke parameters.
基金Project supported by the Natural Science Foundation of China (Grant Nos 60578018 10434080, and 10374062), the Sino-Russia Joint Project (NSFC-RFBR), by the Key Scientific Project of the Education Ministry of China (Grant No 204019), the Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No 705010) and the Program for Innovative Research Team in University (IRT0516) from the Education Ministry of China, and also by the Research Funds for Youth Academic Leaders of Shanxi Province.
文摘We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10174050, 10374029, 10434060 and 10674047), the National Basic Research Program of China (Grant No 2006CB921604), the Science and Technology Commission of Shanghai Municipality (Grant No 04DZ14009), Shanghai Priority Academic Discipline, the 211 Foundation of the Ministry of Education, China.
文摘We propose a novel scheme in which cold polar molecules are trapped by an electrostatic field generated by the combination of a pair of parallel transparent electrodes (i.e., two infinite transparent plates) and a ring electrode (i.e., a ring wire). The spatial distributions of the electrostatic fields from the above charged wire and the charged plates and the corresponding Stark potentials for cold CO molecules are calculated; the dependences of the trap centre position on the geometric parameters of the electrode are analysed. We also discuss the loading process of cold molecules from a cold molecular beam into our trap. This study shows that the proposed scheme is not only simple and convenient to trap, manipulate and control cold polar molecules in weak-field-seeking states, but also provides an opportunity to study cold collisions and collective quantum effects in a variety of cold molecular systems, etc.
基金supported by the National Natural Science Foundation of China(Grant Nos.61227902 and 61121003)the National Defense Basic Scientific Research Program of China(Grant No.B2120132005)
文摘Two methods of absorption imaging to detect cold atoms in a magnetic trap are implemented for a high-precision cold atom interferometer.In the first method,a probe laser which is in resonance with a cycle transition frequency is used to evaluate the quantity and distribution of the atom sample.In the second method,the probe laser is tuned to an open transition frequency,which stimulates a few and constant number of photons per atom.This method has a shorter interaction time and results in absorption images which are not affected by the magnetic field and the light field.We make a comparison of performance between these two imaging methods in the sense of parameters such as pulse duration,light intensity,and magnetic field strength.The experimental results show that the second method is more reliable when detecting the quantity and density profiles of the atoms.These results fit well to the theoretical analysis.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB921603)the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12490)+1 种基金the National Natural Science Foundation of China (Grant Nos.10934004,60978001,60978018,60808009,61078001,and 61008012)the Natural Science Foundation of Shanxi Province,China (Grant No. 2011011004)
文摘In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and the density of the atoms is increased to 5.6 × 1011 cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15. The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately. The experimental results are analyzed by using the perturbative quantum approach.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304177)
文摘We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam.With the independent pushing beam,the atomic flux can be substantially optimized.The total atomic flux maximum obtained in the 2D-HP MOT is4.02 × 1010atoms/s,increased by 60 percent compared to the traditional 2D+MOT in our experiment.Moreover,with the pushing power 10 μW and detuning 0Γ,the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20.The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s.The dependences of the atomic flux on the pushing power and detuning are studied in detail.The experimental results are in good agreement with the theoretical model.
基金the support from Chinese Academy of Science(CAS)TWAS for his Ph.D studies at the University of Science and Technology of China in the category of a 2016 CAS-TWAS President’s Fellowship Awardee(Series No.2016-172)+1 种基金partially supported by National Natural Science Foundation of China(Nos.41331067,41774169,and 41527804)the Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-DQC010)
文摘By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam electrons with immobile neutralized positive ions. Numerical analyses have identified that EA waves with a sufficiently large amplitude tend to trap cold electrons. Because EA waves are dispersive, where the wave modes with different wavenumbers have different phase velocities, the trapping may lead to the mixing of cold electrons. The cold electrons finally get thermalized or heated. The investigation also shows that the excited EA waves give rise to a broad range of wave frequencies, which may be helpful for understanding the broadband-electrostatic-noise spectrum in the Earth’s auroral region.