This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the l...This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the lee side of mountain.A nearby X-band phased-array radar provides evidence that the mesocyclone was shallow,with a depth generally confined to less than 3 km.The mesocyclonic feature was observed to initiate from near-ground level,driven by the interaction between intensifying cold pool surges and shallow lee-side ambient flows.It was first recognized shortly after the presence of near-ground cyclonic convergence signatures over the leading edges of cold pool outflows.Over the subsequent 17 min,the mesocyclone developed upward,reaching a maximum height of 3 km,and produced a tornado 8min later.Nearly coinciding with the time of tornadogenesis,a noticeable separation of the low-level tornado cyclone from the midlevel mesocyclone was observed.This shift in the vertically oriented vortex tube was likely caused by modifications to the low-level flow due to the complex hilly terrain or by occlusions associated with rear-flank downdrafts.After tornadogenesis,high-resolution X-PAR observations revealed that the lowest-level mesocyclonic signature contracted into a gate-to-gate tornadic vortex signature(TVS)at the tip of hook echoes.Compared to conventional S-band operational weather radars,rapid-scan X-PAR observations indicate that a core diameter threshold of 1.5–2 km could be employed to identify a cyclonically sheared radial velocity couplet as a TVS,potentially extending the lead time for Doppler-based tornado warnings.展开更多
A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analy...A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analysis of the structural features and propagation mechanisms of the squall line was conducted. The dynamic and thermodynamic structural charac- teristics and their causes were analyzed in detail. Unbalanced flows were found to play a key role in initiating gravity waves during the squall line's development. The spread and development of the gravity waves were sustained by convection in the wave-CISK process. The squall line's propagation and development mainly relied on the combined effect of gravity waves at the midlevel and cold outflow along the gust front. New cells were continuously forced by the cold pool outflow and were enhanced and lifted by the intense upward motion. At a particular phase, the new cells merged with the updraft of the gravity waves, leading to an intense updraft that strengthened the squall line.展开更多
基金supported by the National Key R&D Program of China(2022YFC3004101)the National Natural Science Foundation of China(Grant No.42275006)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515011814)the China Meteorological Administration Tornado Key Laboratory(Grant No.TKL202302)the Science and Technology Research Project of Guangdong Meteorological Service(Grant No.GRMC2023Q35)。
文摘This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the lee side of mountain.A nearby X-band phased-array radar provides evidence that the mesocyclone was shallow,with a depth generally confined to less than 3 km.The mesocyclonic feature was observed to initiate from near-ground level,driven by the interaction between intensifying cold pool surges and shallow lee-side ambient flows.It was first recognized shortly after the presence of near-ground cyclonic convergence signatures over the leading edges of cold pool outflows.Over the subsequent 17 min,the mesocyclone developed upward,reaching a maximum height of 3 km,and produced a tornado 8min later.Nearly coinciding with the time of tornadogenesis,a noticeable separation of the low-level tornado cyclone from the midlevel mesocyclone was observed.This shift in the vertically oriented vortex tube was likely caused by modifications to the low-level flow due to the complex hilly terrain or by occlusions associated with rear-flank downdrafts.After tornadogenesis,high-resolution X-PAR observations revealed that the lowest-level mesocyclonic signature contracted into a gate-to-gate tornadic vortex signature(TVS)at the tip of hook echoes.Compared to conventional S-band operational weather radars,rapid-scan X-PAR observations indicate that a core diameter threshold of 1.5–2 km could be employed to identify a cyclonically sheared radial velocity couplet as a TVS,potentially extending the lead time for Doppler-based tornado warnings.
基金supported by the National Basic Research Program of China (Grant No. 2013CB 430105)the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05)+1 种基金the project of CAMS (Chinese Academy of Meteorological Sciences) (Grant No. 2011LASWB15)the National Natural Sciences Foundation of China (Grant No. 41175060)
文摘A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analysis of the structural features and propagation mechanisms of the squall line was conducted. The dynamic and thermodynamic structural charac- teristics and their causes were analyzed in detail. Unbalanced flows were found to play a key role in initiating gravity waves during the squall line's development. The spread and development of the gravity waves were sustained by convection in the wave-CISK process. The squall line's propagation and development mainly relied on the combined effect of gravity waves at the midlevel and cold outflow along the gust front. New cells were continuously forced by the cold pool outflow and were enhanced and lifted by the intense upward motion. At a particular phase, the new cells merged with the updraft of the gravity waves, leading to an intense updraft that strengthened the squall line.