The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous ...Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.展开更多
The hurdle technology for food preservation effectively addresses the limitations of individual antimicrobial technologies by integrating their strengths.It can not only prolong the storage time of food but also maint...The hurdle technology for food preservation effectively addresses the limitations of individual antimicrobial technologies by integrating their strengths.It can not only prolong the storage time of food but also maintains its high quality.In this study,three antimicrobial and bactericidal technologies,namely soluble gas stabilization(SGS),modified atmosphere packaging(MAP),and cold plasma(CP),were applied to chilled chicken breasts.The packaging,total viable count(TVC),and physicochemical properties of chilled chicken breasts after treatments and storage at 4℃were monitored.The microbial diversity at the initial and end points of the storage time of each group was also analyzed.The results indicated that a 3−5 h SGS treatment can effectively increase the proportion of carbon dioxide in the MAP during the storage process of chilled chicken breasts,thereby alleviating the packaging collapse problem.Simultaneously,the effect of SGS,MAP,and CP combinational treatments significantly extended the storage time of chilled chicken breasts while maintaining the physicochemical qualities of samples.Compared to the control group,the TVC of chicken breast treated with SGS,MAP,and CP treatments decreased by 0.58(lg(CFU/g))at 0 day.The shelf life was extended by 5 days.After 8 days,the total volatile basic nitrogen(TVB-N)was 26.67 vs.19.50 mg/100 g,thiobarbituric acid reactive substances(TBARS)was 0.99 vs.0.72 mg MDA/kg,and TVC was 8.22 vs.6.52(lg(CFU/g)).High-throughput sequencing results showed that SGS and MAP treatments significantly reduce the proportion of Pseudomonas and Psychrobacter,which are sensitive to carbon dioxide,in the total bacterial genera.This study underscores the potential of integrating multiple antimicrobial technologies for effective food preservation.展开更多
The paper presented the results regarding the decomposition of gaseous CF_2ClB_r by cold plasma method.After two minutes discharge,the maximum decomposition rate of 2660 Pa CF_2ClB_r pure and 2660 Pa CF_2ClBr plus 798...The paper presented the results regarding the decomposition of gaseous CF_2ClB_r by cold plasma method.After two minutes discharge,the maximum decomposition rate of 2660 Pa CF_2ClB_r pure and 2660 Pa CF_2ClBr plus 7980 Pa O_2 reached 60% and 80%,respectively.The pa- per also studied the cold plasma gas phase chemistry reaction mechanism of CF_2ClBr at low pres- sure,and the pressure effects of CF_2ClBr and added gas(He,N_2,O_2 and dry air)on the CF_2ClBr decomposition respectively by cold plasma method.These studies will be helpful to application of cold plasma method in the treatment of hazardous gaseous wastes.展开更多
Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents...Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.展开更多
Aiming at the problem of insufficient prediction accuracy of strip flatness at the outlet of cold tandem rolling,the prediction performance of strip flatness based on different ensemble methods was studied and a high-...Aiming at the problem of insufficient prediction accuracy of strip flatness at the outlet of cold tandem rolling,the prediction performance of strip flatness based on different ensemble methods was studied and a high-precision prediction ensemble model of strip flatness at the outlet was established.Firstly,based on linear regression(LR),K nearest neighbors(KNN),support vector regression,regression trees(RT),and backpropagation neural network(BPN),bagging,boosting,and stacking ensemble methods were used for ensemble experiments.Secondly,three existing ensemble models,i.e.,random forest,extreme random tree(ET)and extreme gradient boosting,were used to conduct experiments and compare the results.The research shows that bagging,boosting,and stacking three ensemble methods have the most significant improvement in the prediction accuracy of the regression trees model,which is increased by 5.28%,6.51%,and 5.32%,respectively.At the same time,the stacking ensemble method improves both the simple model and the complex model,and the improvement effect on the simple base model is the greatest,which is 4.69%higher than that of the base model KNN.Comparing all of the ensemble models,the stacking ensemble model of level-1(ET,AdaBoost-RT,LR,BPN)paired with level-2(LR)was discovered to be the best model(EALB-LR)and can be further studied for industrial applications.展开更多
This article presents advancements in an analytical mode-matching technique for studying electromagnetic wave propagation in a parallel-plate metallic rectangular waveguide.This technique involves projecting the solut...This article presents advancements in an analytical mode-matching technique for studying electromagnetic wave propagation in a parallel-plate metallic rectangular waveguide.This technique involves projecting the solution onto basis functions and solving linear algebraic systems to determine scattering amplitudes.The accuracy of this method is validated via numerical assessments,which involve the reconstruction of matching conditions and conservation laws.The study highlights the impact of geometric and material variations on reflection and transmission phenomena in the waveguide.展开更多
The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patti...The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment.展开更多
Cold atmospheric plasmas(CAPs)have attracted considerable interest in the field of plasma medicine.Generated reactive species such as hydroxyl(OH)species play an important role in applications of CAPs.Transportation o...Cold atmospheric plasmas(CAPs)have attracted considerable interest in the field of plasma medicine.Generated reactive species such as hydroxyl(OH)species play an important role in applications of CAPs.Transportation of OH species towards the target and distribution of these OH species in the plasma plume play an important role in the applications of plasma medicine.In the present work,a computational model was built to simulate the transportation and distribution of OH species in CAP discharges,which was based on the level set method to dynamically track the propagation of plasma carrier gas in air.A reaction term was incorporated for the OH species.The OH species tended to diffuse around the main stream of the carrier gas,and thus covered larger radial and axial distances.A CAP discharge onto a skin layer led to the largest accumulation of OH species at the central part of the exposed area.The distribution of OH species on the skin was asymmetric,which agreed with experiments.The computational model itself and the obtained results would be useful for future development of plasma medicine.展开更多
It was found out that spices straight from the package are not sterile. The only way to receive sterile spices is to use radiation technology which means to irradiate spices with ionizing radiation. However, this meth...It was found out that spices straight from the package are not sterile. The only way to receive sterile spices is to use radiation technology which means to irradiate spices with ionizing radiation. However, this method is quite expensive and raises great resistance of public. And this is the reason why we are interested in implementing plasma technology. The first step of the research was to choose the most appropriate spice. The range of available spices is nearly unlimited, however, we took into account the following ones: sweet paprika, basil, rosemary, saffron, marjoram, thyme and black pepper. Finally, we chose black pepper because it is most often used by butchers to make meat products. It is also called the "King of Spices" or the "Black Gold". Black pepper is one of the most often used spices in the United States and in Europe. It is important to have sterile black pepper when we aim at ripening products for example ripening sausages or some kinds of cheeses. What is more, it was found out that black pepper has antimicrobial properties, antioxidant effects and also antipyretic and analgesic properties. The aim of the research was to receive sterile spices using low pressure cold plasma with oxygen, nitrogen, air, argon and hydrogen peroxide.展开更多
Background:Cold temperatures cause blood vessels to constrict,shallow breathing,and slight thickening of the blood.Working in extremely cold environments can have negative effects on health,yet there are currently no ...Background:Cold temperatures cause blood vessels to constrict,shallow breathing,and slight thickening of the blood.Working in extremely cold environments can have negative effects on health,yet there are currently no effective biomarkers to monitor these health conditions.Proteins are important intermediate phenotypes that can provide a theoretical basis for understanding disease pathophysiology.Proteins in the circulatory system reflect the physiological status of individuals,and plasma proteins have significant potential as biomarkers for various health conditions.Methods:In this study,we employed the Mendelian randomization(MR)method to analyze the effects of freezing temperatures on over 2900 plasma proteins.Subsequently,the selected plasma proteins were subjected to causal analysis in relation to 55 diseases,including respiratory disorders,cardiovascular diseases,various cancers,and oral diseases.The aim was to identify proteins that could serve as biomarkers for health status.Results:Our results indicate that cold environments may affect the concentrations of 78 plasma proteins.Further MR analysis revealed that nine of these plasma proteins are associated with the risk of respiratory disorders,cardiovascular diseases,various cancers,and oral diseases.Conclusion:These proteins show promise as biomarkers for monitoring the hazards and risks faced by individuals working in cold environments.These findings provide valuable insights into the biological mechanisms underlying occupational hazards.展开更多
Rice(Oryza sativa L.),a thermophilic crop,is highly sensitive to cold stress,particularly during the seedling stage.Developing cold-tolerant rice varieties is a possible strategy to mitigate yield losses caused by low...Rice(Oryza sativa L.),a thermophilic crop,is highly sensitive to cold stress,particularly during the seedling stage.Developing cold-tolerant rice varieties is a possible strategy to mitigate yield losses caused by low temperatures.However,few genes for cold tolerance have been identified.In this study,we identified OsALA4(Aminophospholipid ATPase 4),encoding a plasma membrane-localized P4-ATPase,from a chromosomal segment substitution line(CSSL-K2832-2)harboring cold-tolerance QTL qLTS5(Low Temperature Sensitive 5).Genetic and subcellular localization analyses revealed that OsALA4 regulates cold tolerance by maintaining plasma membrane fluidity and cellular homeostasis.Physiological assessments showed that OsALA4 reduces malondialdehyde(MDA),electrolyte leakage,reactive oxygen species(ROS),and cell death under cold stress.Promoter activity assays indicated that stronger OsALA4 expression in Nipponbare(OsALA4Nip)correlated with enhanced cold tolerance.Further experiments demonstrated that SNP sites within the promoter regions(-1500 bp to-700 bp)of OsALA4Nipand OsALA49311influenced their activity.This study highlights Os ALA4 as a valuable genetic target for breeding cold tolerant rice.展开更多
Due to the high hardness and low fracture toughness of the single crystal silicon(SCS),it is highly susceptible to microscopic cracks and subsurface damage during processing.In this paper,we propose to adjust the mech...Due to the high hardness and low fracture toughness of the single crystal silicon(SCS),it is highly susceptible to microscopic cracks and subsurface damage during processing.In this paper,we propose to adjust the mechanical properties of SCS by cold plasma jet,and systematically investigate the influences of the plasma on material deformation and damage mechanisms by nanoscratch tests.The results indicate that the plasma can increase the critical normal force for the plastic-brittle(P-B)conversion of SCS.Compared with the ordinary nanoscratch test,the critical force for P-B conversion of plasma-assisted scratching at 1μm/s can increase from 43.6 to 66.4 mN.Increasing the scratching speed under ordinary conditions can enhance the plastic deformability of SCS to some extent,but its effect is not as effective as that of plasma;in addition,the increased scratching speed causes the shear bands(SBs)to lack time to propagate,so the quantity of SBs under plasma-assisted scratching at 10μm/s is reduced compared to 1μm/s.From subsurface damage topographies,the highly localized amorphous SBs cause the generation of subsurface cracks.The cold plasma can alleviate cracks on the scratched subsurface of SCS by introducing multiple SBs and stacking faults.This paper may provide a novel strategy for high-efficiency and low-damage ultra-precision machining of hard and brittle materials.展开更多
Challenges arise in global viticulture due to low temperatures.To ensure the sustainable and high-quality development of the wine industry,it is essential to breed wine grape varieties that are not only of high qualit...Challenges arise in global viticulture due to low temperatures.To ensure the sustainable and high-quality development of the wine industry,it is essential to breed wine grape varieties that are not only of high quality but also possess cold hardiness.Intraspecific recurrent selection in Vitis vinifera can enhance cold hardiness while maintaining fruit quality.In this study,we used‘Ecolly’as an intermediary grape variety for crossing with‘Cabernet Sauvignon’,‘Marselan’,and‘Dunkelfelder’,including three reciprocal crosses and a total of 1,657 intraspecific hybrids.We characterized the cold hardiness of these intraspecific hybrids and analyzed the genetic aspects of cold hardiness,ultimately identifying excellent strains with cold hardiness.Parameters like mean high-temperature exotherm(mHTE),mean low-temperature exotherm(mLTE),bound/free water ratio,water loss ratio in vitro,frost damage grades,and overall performance displayed partially normal distributions.In intraspecific hybrids,there was a maternal advantage in traits related to bound/free water ratio and water loss ratio.Some hybrid populations exhibited values for mHTE,mLTE,and water loss ratio that were lower than the low parent's values,while bound/free water ratio showed values higher than the high parent's values.Among the 1,657 intraspecific hybrids,52 strains could bud under stress at-18℃,and seven of these strains excelled in three important cold hardiness measures.Our study revealed that cold hardiness in V.vinifera is influenced by multiple genes and is a quantitative trait.Intraspecific hybridization can produce a small number of superior strains with enhanced cold hardiness.展开更多
Cold atmospheric plasma(CAP)has emerged as a promising technology for the degradation of organic dyes,but the underlying mechanisms at the molecular level remain poorly understood.Using density-functional tight-bindin...Cold atmospheric plasma(CAP)has emerged as a promising technology for the degradation of organic dyes,but the underlying mechanisms at the molecular level remain poorly understood.Using density-functional tight-binding(DFTB)-based quantum chemical molecular dynamics at 300 K,we have performed numerical simulations to investigate the degradation mechanism of Disperse Red 1(DR)interacting with CAP-generated oxygen radicals.One hundred directdynamics trajectories were calculated for up to 100 ps simulation time,after which hydrogenabstraction,benzene ring-opening/expanding,formaldehyde formation and modification in the chromophoric azo group which can lead to color-losing were observed.The latter was obtained with yields of around 6%at the given temperature.These findings not only enhance our understanding of CAP treatment processes but also have implications for the development of optimized purification systems for sustainable wastewater treatment.This study underscores the utility of DFTB simulations in unraveling complex chemical processes and guiding the design of advanced treatment strategies in the context of CAP technology.展开更多
BACKGROUND Although substantial evidence supports the advantages of cold snare polypectomy(CSP)in terms of polypectomy efficacy and reduced postoperative adverse events,few studies have examined the cost differences b...BACKGROUND Although substantial evidence supports the advantages of cold snare polypectomy(CSP)in terms of polypectomy efficacy and reduced postoperative adverse events,few studies have examined the cost differences between CSP and traditional endoscopic mucosal resection(EMR)for the treatment of intestinal polyps.AIM To compare the efficacy-cost of EMR and CSP in the treatment of intestinal polyps.METHODS A total of 100 patients with intestinal polyps were included in the retrospective data of our hospital from April 2022 to May 2023.According to the treatment methods,they were divided into EMR(n=46)group and CSP(n=54)group.The baseline data of the two groups were balanced by 1:1 propensity score matching(PSM),and the cost-effectiveness analysis was performed on the two groups after matching.The recurrence rate of the two groups of patients was followed up for 1 year,and they were divided into recurrence group and non-recurrence group according to whether they recurred.Multivariate logistic regression analysis was used to screen out the influencing factors affecting the recurrence of intestinal polyps after endoscopic resection.RESULTS Significant disparities were observed in the number of polyps and smoking background between the two groups before PSM(P<0.05).Following PSM,the number of polyps and smoking history were well balanced between the EMR and CSP groups.The direct cost incurred by the CSP group was markedly higher than that incurred by the EMR group.Concurrently,the cost-effectiveness ratio in the CSP group was substantially reduced when juxtaposed with that in the EMR group(P<0.05).Upon completion of the 1-year follow-up,the rate of recurrence after endoscopic intestinal polypectomy was 38.00%.Multivariate methods revealed that age≥60 years,male sex,number of polyps≥3,and pathological type of adenoma were risk factors for recurrence after endoscopic intestinal polypectomy(all P<0.05).CONCLUSION CSP was more cost-effective for the treatment of intestinal polyps.An age≥60 years,male sex,having a number of polyps≥3,and pathological type of adenoma are independent influencing factors for recurrence.展开更多
Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption.While marine fish have attractedmuch research...Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption.While marine fish have attractedmuch research interest due to their higher arsenic content,research on freshwater fish is limited due to the challenges in quantifying and identifying arsenic species present at trace levels.We describe here a sensitivemethod and its application to the quantification of arsenic species in freshwater fish.Arsenic species from fish tissues were extracted using a methanol/water mixture(1:1 vol.ratio)and ultrasound sonication.Anion-exchange high-performance liquid chromatography(HPLC)enabled separation of arsenobetaine(AsB),inorganic arsenite(iAs^(Ⅲ)),dimethylarsinic acid(DMA),monomethylarsonic acid(MMA),inorganic arsenate(iAs^(Ⅴ)),and three new arsenic species.Inductively coupled plasma mass spectrometry(ICPMS)provided highly sensitive and specific detection of arsenic.A limit of detection of 0.25μg/kg(wet weight fish tissue)was achieved for the five target arsenic species:AsB,iAs^(Ⅲ),DMA,MMA,and iAs^(Ⅴ).A series of experimentswere conducted to ensure the accuracy and validity of the analytical method.The method was successfully applied to the determination of arsenic species in lakewhitefish,northern pike,and walleye,with AsB,DMA,and iAs^(Ⅴ) being frequently detected.Three new arsenic species were detected,but their chromatographic retention times did not match with those of any available arsenic standards.Future research is necessary to elucidate the identity of these new arsenic species detected in freshwater fish.展开更多
[Objective] The paper was to study the effect of cold plasma on binding strength of bamboo. [Method] The bamboos were treated by 4 kinds of cold plasma nitrogen, oxygen, ammonia and argon, and the changes of contact a...[Objective] The paper was to study the effect of cold plasma on binding strength of bamboo. [Method] The bamboos were treated by 4 kinds of cold plasma nitrogen, oxygen, ammonia and argon, and the changes of contact angle and binding strength of bamboos before and after treatment were tested. [Result] Oxygen cold plasma treatment could increase binding strength of bamboo by 25%-30%. The cold plasma treatment was very fast and effective, but the changes of contact angle was not great in this experiment. [Conclusion] Cold plasma treatment could increase the binding strength of bamboo.展开更多
In the test, woods were treated by N2, O2 cold plasma with the processing power 300 W, which last for 5 min; subsequently, the treated woods were bonded with MUF to valve the bonding performance, the contact angles of...In the test, woods were treated by N2, O2 cold plasma with the processing power 300 W, which last for 5 min; subsequently, the treated woods were bonded with MUF to valve the bonding performance, the contact angles of the treated/un- treated wood were tested. The chemical composition on the surface of wood with or without N2 cold plasma treatment was also studied by X-ray photoelectron spec- troscopy (XPS). The results showed: the contact angles of the surface decreased; the surface free energy increased evidently that treated by N2 or O2 cold plasma; the average bonding performance of wood that treated by cold plasma (whether N2 or O2) increased obviously and more than 50% was proved compared with that un- treated by cold plasma. The XPS analysis showed the atomic ratio O/C has in- creased, and more groups were oxidized or more peroxides were formed on the surface of wood; N element was introduced to the wood surface after nitrogen cold plasma treatment and it was estimated to the group of -NH2.展开更多
Objective To observe the clinical efficacy of Wentong needling method in the treatment of long-term cough cases after common cold. Methods Wentong needling method was used in the treatment of 30 cases with long-term c...Objective To observe the clinical efficacy of Wentong needling method in the treatment of long-term cough cases after common cold. Methods Wentong needling method was used in the treatment of 30 cases with long-term cough after common cold. Acupoints including Quchi (曲池 LI 11, left side), Hegu (合谷, LI 4, left side), Lieque (列缺, LU 7, right side), Fenglong (丰隆', ST 40, right side), Chize (尺泽, LU 5, right side), Zusanli (足三里, ST 36, right side), Zhaohai (照海, KI 6, left side), Taichong (太冲h, LR 3, both sides), and Waiqiu (外丘, GB 36, left side) were selected. The treatment was given every other day. After one treatment course, the relation between the long-term cough cases after common cold and Wentong needling method clinical efficacy was observed from aspects of different ages, disease duration and disease degree. Results There were 18 cured cases (60.0%), 8 markedly effective cases (26.7%), 4 effective cases (13.33%), and 0 invalid case (0.0%). The total effective rate was 200%. The treatment efficacy of cough patients after common cold of less than 24 months was better than that of more than 24 months. Along with the increasing of age, the cured and markedly effective rate was of certain downward tendency. Along with the increasing of treatment times, the cured and markedly effective rate increased. Conclusion The clinical efficacy of Wentong needling method is obvious in the treatment of long-term cough cases after common cold.展开更多
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
基金supported by the National Natural Science Foundation of China (NSFC) through Grant Number 42074193
文摘Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.
基金supported by the National Natural Science Foundation of China(32272252)the China Agriculture Research System(CARS-41)funded by the Chinese Ministry of Agriculture and Rural Affairs and Wens Fifth Five R&D Major Project(WENS-2020-1-ZDZX-007).
文摘The hurdle technology for food preservation effectively addresses the limitations of individual antimicrobial technologies by integrating their strengths.It can not only prolong the storage time of food but also maintains its high quality.In this study,three antimicrobial and bactericidal technologies,namely soluble gas stabilization(SGS),modified atmosphere packaging(MAP),and cold plasma(CP),were applied to chilled chicken breasts.The packaging,total viable count(TVC),and physicochemical properties of chilled chicken breasts after treatments and storage at 4℃were monitored.The microbial diversity at the initial and end points of the storage time of each group was also analyzed.The results indicated that a 3−5 h SGS treatment can effectively increase the proportion of carbon dioxide in the MAP during the storage process of chilled chicken breasts,thereby alleviating the packaging collapse problem.Simultaneously,the effect of SGS,MAP,and CP combinational treatments significantly extended the storage time of chilled chicken breasts while maintaining the physicochemical qualities of samples.Compared to the control group,the TVC of chicken breast treated with SGS,MAP,and CP treatments decreased by 0.58(lg(CFU/g))at 0 day.The shelf life was extended by 5 days.After 8 days,the total volatile basic nitrogen(TVB-N)was 26.67 vs.19.50 mg/100 g,thiobarbituric acid reactive substances(TBARS)was 0.99 vs.0.72 mg MDA/kg,and TVC was 8.22 vs.6.52(lg(CFU/g)).High-throughput sequencing results showed that SGS and MAP treatments significantly reduce the proportion of Pseudomonas and Psychrobacter,which are sensitive to carbon dioxide,in the total bacterial genera.This study underscores the potential of integrating multiple antimicrobial technologies for effective food preservation.
文摘The paper presented the results regarding the decomposition of gaseous CF_2ClB_r by cold plasma method.After two minutes discharge,the maximum decomposition rate of 2660 Pa CF_2ClB_r pure and 2660 Pa CF_2ClBr plus 7980 Pa O_2 reached 60% and 80%,respectively.The pa- per also studied the cold plasma gas phase chemistry reaction mechanism of CF_2ClBr at low pres- sure,and the pressure effects of CF_2ClBr and added gas(He,N_2,O_2 and dry air)on the CF_2ClBr decomposition respectively by cold plasma method.These studies will be helpful to application of cold plasma method in the treatment of hazardous gaseous wastes.
基金the financial support from Intecells Inc.via an award number AWD_19-08-0127the support from Paul M.Rady Mechanical Engineering Department at University of Colorado Boulder
文摘Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.
基金This study was supported by the National Key Research and Development Program of China(No.2017YFB0304100)Key Projects of the National Natural Science Foundation of China(No.51634002).
文摘Aiming at the problem of insufficient prediction accuracy of strip flatness at the outlet of cold tandem rolling,the prediction performance of strip flatness based on different ensemble methods was studied and a high-precision prediction ensemble model of strip flatness at the outlet was established.Firstly,based on linear regression(LR),K nearest neighbors(KNN),support vector regression,regression trees(RT),and backpropagation neural network(BPN),bagging,boosting,and stacking ensemble methods were used for ensemble experiments.Secondly,three existing ensemble models,i.e.,random forest,extreme random tree(ET)and extreme gradient boosting,were used to conduct experiments and compare the results.The research shows that bagging,boosting,and stacking three ensemble methods have the most significant improvement in the prediction accuracy of the regression trees model,which is increased by 5.28%,6.51%,and 5.32%,respectively.At the same time,the stacking ensemble method improves both the simple model and the complex model,and the improvement effect on the simple base model is the greatest,which is 4.69%higher than that of the base model KNN.Comparing all of the ensemble models,the stacking ensemble model of level-1(ET,AdaBoost-RT,LR,BPN)paired with level-2(LR)was discovered to be the best model(EALB-LR)and can be further studied for industrial applications.
文摘This article presents advancements in an analytical mode-matching technique for studying electromagnetic wave propagation in a parallel-plate metallic rectangular waveguide.This technique involves projecting the solution onto basis functions and solving linear algebraic systems to determine scattering amplitudes.The accuracy of this method is validated via numerical assessments,which involve the reconstruction of matching conditions and conservation laws.The study highlights the impact of geometric and material variations on reflection and transmission phenomena in the waveguide.
基金supported by the Key Scientific and Technological Research Projects of Xinjiang Production and Construction Corps (2022AB001)the Henan Key Laboratory of Cold Chain Food Quality and Safety Control (CCFQ2022)+2 种基金the National Key R&D Program of China (2019YFC1606200),funded by Ministry of Science and Technology of the People’s Republic of Chinathe China Agriculture Research System (CARS-41), which was funded by the Chinese Ministry of Agriculturethe Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD)
文摘The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment.
基金funded by National Natural Science Foundation of China (Nos. U1632145, 81573093 and 81227902)funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, China Postdoctoral Science Foundation (No. 2016M592584)Strategic Research Grant 7004641 from City University of Hong Kong
文摘Cold atmospheric plasmas(CAPs)have attracted considerable interest in the field of plasma medicine.Generated reactive species such as hydroxyl(OH)species play an important role in applications of CAPs.Transportation of OH species towards the target and distribution of these OH species in the plasma plume play an important role in the applications of plasma medicine.In the present work,a computational model was built to simulate the transportation and distribution of OH species in CAP discharges,which was based on the level set method to dynamically track the propagation of plasma carrier gas in air.A reaction term was incorporated for the OH species.The OH species tended to diffuse around the main stream of the carrier gas,and thus covered larger radial and axial distances.A CAP discharge onto a skin layer led to the largest accumulation of OH species at the central part of the exposed area.The distribution of OH species on the skin was asymmetric,which agreed with experiments.The computational model itself and the obtained results would be useful for future development of plasma medicine.
文摘It was found out that spices straight from the package are not sterile. The only way to receive sterile spices is to use radiation technology which means to irradiate spices with ionizing radiation. However, this method is quite expensive and raises great resistance of public. And this is the reason why we are interested in implementing plasma technology. The first step of the research was to choose the most appropriate spice. The range of available spices is nearly unlimited, however, we took into account the following ones: sweet paprika, basil, rosemary, saffron, marjoram, thyme and black pepper. Finally, we chose black pepper because it is most often used by butchers to make meat products. It is also called the "King of Spices" or the "Black Gold". Black pepper is one of the most often used spices in the United States and in Europe. It is important to have sterile black pepper when we aim at ripening products for example ripening sausages or some kinds of cheeses. What is more, it was found out that black pepper has antimicrobial properties, antioxidant effects and also antipyretic and analgesic properties. The aim of the research was to receive sterile spices using low pressure cold plasma with oxygen, nitrogen, air, argon and hydrogen peroxide.
基金funded by the Health Commission of Heilongjiang Province(Project Number:20230808010517).
文摘Background:Cold temperatures cause blood vessels to constrict,shallow breathing,and slight thickening of the blood.Working in extremely cold environments can have negative effects on health,yet there are currently no effective biomarkers to monitor these health conditions.Proteins are important intermediate phenotypes that can provide a theoretical basis for understanding disease pathophysiology.Proteins in the circulatory system reflect the physiological status of individuals,and plasma proteins have significant potential as biomarkers for various health conditions.Methods:In this study,we employed the Mendelian randomization(MR)method to analyze the effects of freezing temperatures on over 2900 plasma proteins.Subsequently,the selected plasma proteins were subjected to causal analysis in relation to 55 diseases,including respiratory disorders,cardiovascular diseases,various cancers,and oral diseases.The aim was to identify proteins that could serve as biomarkers for health status.Results:Our results indicate that cold environments may affect the concentrations of 78 plasma proteins.Further MR analysis revealed that nine of these plasma proteins are associated with the risk of respiratory disorders,cardiovascular diseases,various cancers,and oral diseases.Conclusion:These proteins show promise as biomarkers for monitoring the hazards and risks faced by individuals working in cold environments.These findings provide valuable insights into the biological mechanisms underlying occupational hazards.
基金supported by grants from the National Natural Science Foundation of China(32121003,32325038)Key Research and Development Projects of Sichuan(2021YFYZ0016)Open Project Program(SKL-ZD202207)of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China。
文摘Rice(Oryza sativa L.),a thermophilic crop,is highly sensitive to cold stress,particularly during the seedling stage.Developing cold-tolerant rice varieties is a possible strategy to mitigate yield losses caused by low temperatures.However,few genes for cold tolerance have been identified.In this study,we identified OsALA4(Aminophospholipid ATPase 4),encoding a plasma membrane-localized P4-ATPase,from a chromosomal segment substitution line(CSSL-K2832-2)harboring cold-tolerance QTL qLTS5(Low Temperature Sensitive 5).Genetic and subcellular localization analyses revealed that OsALA4 regulates cold tolerance by maintaining plasma membrane fluidity and cellular homeostasis.Physiological assessments showed that OsALA4 reduces malondialdehyde(MDA),electrolyte leakage,reactive oxygen species(ROS),and cell death under cold stress.Promoter activity assays indicated that stronger OsALA4 expression in Nipponbare(OsALA4Nip)correlated with enhanced cold tolerance.Further experiments demonstrated that SNP sites within the promoter regions(-1500 bp to-700 bp)of OsALA4Nipand OsALA49311influenced their activity.This study highlights Os ALA4 as a valuable genetic target for breeding cold tolerant rice.
基金Supported by National Natural Science Foundation of China(Grant No.52475430)the Fundamental Research Funds for the Central Universities(Grant No.DUT23YG118).
文摘Due to the high hardness and low fracture toughness of the single crystal silicon(SCS),it is highly susceptible to microscopic cracks and subsurface damage during processing.In this paper,we propose to adjust the mechanical properties of SCS by cold plasma jet,and systematically investigate the influences of the plasma on material deformation and damage mechanisms by nanoscratch tests.The results indicate that the plasma can increase the critical normal force for the plastic-brittle(P-B)conversion of SCS.Compared with the ordinary nanoscratch test,the critical force for P-B conversion of plasma-assisted scratching at 1μm/s can increase from 43.6 to 66.4 mN.Increasing the scratching speed under ordinary conditions can enhance the plastic deformability of SCS to some extent,but its effect is not as effective as that of plasma;in addition,the increased scratching speed causes the shear bands(SBs)to lack time to propagate,so the quantity of SBs under plasma-assisted scratching at 10μm/s is reduced compared to 1μm/s.From subsurface damage topographies,the highly localized amorphous SBs cause the generation of subsurface cracks.The cold plasma can alleviate cracks on the scratched subsurface of SCS by introducing multiple SBs and stacking faults.This paper may provide a novel strategy for high-efficiency and low-damage ultra-precision machining of hard and brittle materials.
基金supported by Project of Ningxia Hui Autonomous Region Key R&D Program(Grant No.NXNYYZ202101)the National Natural Science Foundation of China(Grant No.32360804)+1 种基金Ningxia Science and Technology Department major scientific and technological achievements transformation project(Grant No.2022CJE9007)Ningxia Natural Science Foundation(Grant No.2023AAC03064).
文摘Challenges arise in global viticulture due to low temperatures.To ensure the sustainable and high-quality development of the wine industry,it is essential to breed wine grape varieties that are not only of high quality but also possess cold hardiness.Intraspecific recurrent selection in Vitis vinifera can enhance cold hardiness while maintaining fruit quality.In this study,we used‘Ecolly’as an intermediary grape variety for crossing with‘Cabernet Sauvignon’,‘Marselan’,and‘Dunkelfelder’,including three reciprocal crosses and a total of 1,657 intraspecific hybrids.We characterized the cold hardiness of these intraspecific hybrids and analyzed the genetic aspects of cold hardiness,ultimately identifying excellent strains with cold hardiness.Parameters like mean high-temperature exotherm(mHTE),mean low-temperature exotherm(mLTE),bound/free water ratio,water loss ratio in vitro,frost damage grades,and overall performance displayed partially normal distributions.In intraspecific hybrids,there was a maternal advantage in traits related to bound/free water ratio and water loss ratio.Some hybrid populations exhibited values for mHTE,mLTE,and water loss ratio that were lower than the low parent's values,while bound/free water ratio showed values higher than the high parent's values.Among the 1,657 intraspecific hybrids,52 strains could bud under stress at-18℃,and seven of these strains excelled in three important cold hardiness measures.Our study revealed that cold hardiness in V.vinifera is influenced by multiple genes and is a quantitative trait.Intraspecific hybridization can produce a small number of superior strains with enhanced cold hardiness.
基金the financial support from the Ministry of Higher Education,Science,and Innovations of the Republic of Uzbekistan (Nos.AL-4821012320 and AL-5921122141)。
文摘Cold atmospheric plasma(CAP)has emerged as a promising technology for the degradation of organic dyes,but the underlying mechanisms at the molecular level remain poorly understood.Using density-functional tight-binding(DFTB)-based quantum chemical molecular dynamics at 300 K,we have performed numerical simulations to investigate the degradation mechanism of Disperse Red 1(DR)interacting with CAP-generated oxygen radicals.One hundred directdynamics trajectories were calculated for up to 100 ps simulation time,after which hydrogenabstraction,benzene ring-opening/expanding,formaldehyde formation and modification in the chromophoric azo group which can lead to color-losing were observed.The latter was obtained with yields of around 6%at the given temperature.These findings not only enhance our understanding of CAP treatment processes but also have implications for the development of optimized purification systems for sustainable wastewater treatment.This study underscores the utility of DFTB simulations in unraveling complex chemical processes and guiding the design of advanced treatment strategies in the context of CAP technology.
文摘BACKGROUND Although substantial evidence supports the advantages of cold snare polypectomy(CSP)in terms of polypectomy efficacy and reduced postoperative adverse events,few studies have examined the cost differences between CSP and traditional endoscopic mucosal resection(EMR)for the treatment of intestinal polyps.AIM To compare the efficacy-cost of EMR and CSP in the treatment of intestinal polyps.METHODS A total of 100 patients with intestinal polyps were included in the retrospective data of our hospital from April 2022 to May 2023.According to the treatment methods,they were divided into EMR(n=46)group and CSP(n=54)group.The baseline data of the two groups were balanced by 1:1 propensity score matching(PSM),and the cost-effectiveness analysis was performed on the two groups after matching.The recurrence rate of the two groups of patients was followed up for 1 year,and they were divided into recurrence group and non-recurrence group according to whether they recurred.Multivariate logistic regression analysis was used to screen out the influencing factors affecting the recurrence of intestinal polyps after endoscopic resection.RESULTS Significant disparities were observed in the number of polyps and smoking background between the two groups before PSM(P<0.05).Following PSM,the number of polyps and smoking history were well balanced between the EMR and CSP groups.The direct cost incurred by the CSP group was markedly higher than that incurred by the EMR group.Concurrently,the cost-effectiveness ratio in the CSP group was substantially reduced when juxtaposed with that in the EMR group(P<0.05).Upon completion of the 1-year follow-up,the rate of recurrence after endoscopic intestinal polypectomy was 38.00%.Multivariate methods revealed that age≥60 years,male sex,number of polyps≥3,and pathological type of adenoma were risk factors for recurrence after endoscopic intestinal polypectomy(all P<0.05).CONCLUSION CSP was more cost-effective for the treatment of intestinal polyps.An age≥60 years,male sex,having a number of polyps≥3,and pathological type of adenoma are independent influencing factors for recurrence.
基金supported by Alberta Health,Alberta Innovates,the Canada Research Chairs Program,the Canadian Institutes of Health Research,and the Natural Sciences and Engineering Research Council of Canada。
文摘Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption.While marine fish have attractedmuch research interest due to their higher arsenic content,research on freshwater fish is limited due to the challenges in quantifying and identifying arsenic species present at trace levels.We describe here a sensitivemethod and its application to the quantification of arsenic species in freshwater fish.Arsenic species from fish tissues were extracted using a methanol/water mixture(1:1 vol.ratio)and ultrasound sonication.Anion-exchange high-performance liquid chromatography(HPLC)enabled separation of arsenobetaine(AsB),inorganic arsenite(iAs^(Ⅲ)),dimethylarsinic acid(DMA),monomethylarsonic acid(MMA),inorganic arsenate(iAs^(Ⅴ)),and three new arsenic species.Inductively coupled plasma mass spectrometry(ICPMS)provided highly sensitive and specific detection of arsenic.A limit of detection of 0.25μg/kg(wet weight fish tissue)was achieved for the five target arsenic species:AsB,iAs^(Ⅲ),DMA,MMA,and iAs^(Ⅴ).A series of experimentswere conducted to ensure the accuracy and validity of the analytical method.The method was successfully applied to the determination of arsenic species in lakewhitefish,northern pike,and walleye,with AsB,DMA,and iAs^(Ⅴ) being frequently detected.Three new arsenic species were detected,but their chromatographic retention times did not match with those of any available arsenic standards.Future research is necessary to elucidate the identity of these new arsenic species detected in freshwater fish.
基金Supported by Opening Research Project for Key Laboratory of Bamboo in Zhejiang Forestry Academy(2010K04)~~
文摘[Objective] The paper was to study the effect of cold plasma on binding strength of bamboo. [Method] The bamboos were treated by 4 kinds of cold plasma nitrogen, oxygen, ammonia and argon, and the changes of contact angle and binding strength of bamboos before and after treatment were tested. [Result] Oxygen cold plasma treatment could increase binding strength of bamboo by 25%-30%. The cold plasma treatment was very fast and effective, but the changes of contact angle was not great in this experiment. [Conclusion] Cold plasma treatment could increase the binding strength of bamboo.
基金Supported by National Natural Science Foundation of China(Project No.30930074)the Construction of Bamboo Research Innovation in Zhejiang Forestry Academy(No2012F20024)~~
文摘In the test, woods were treated by N2, O2 cold plasma with the processing power 300 W, which last for 5 min; subsequently, the treated woods were bonded with MUF to valve the bonding performance, the contact angles of the treated/un- treated wood were tested. The chemical composition on the surface of wood with or without N2 cold plasma treatment was also studied by X-ray photoelectron spec- troscopy (XPS). The results showed: the contact angles of the surface decreased; the surface free energy increased evidently that treated by N2 or O2 cold plasma; the average bonding performance of wood that treated by cold plasma (whether N2 or O2) increased obviously and more than 50% was proved compared with that un- treated by cold plasma. The XPS analysis showed the atomic ratio O/C has in- creased, and more groups were oxidized or more peroxides were formed on the surface of wood; N element was introduced to the wood surface after nitrogen cold plasma treatment and it was estimated to the group of -NH2.
文摘Objective To observe the clinical efficacy of Wentong needling method in the treatment of long-term cough cases after common cold. Methods Wentong needling method was used in the treatment of 30 cases with long-term cough after common cold. Acupoints including Quchi (曲池 LI 11, left side), Hegu (合谷, LI 4, left side), Lieque (列缺, LU 7, right side), Fenglong (丰隆', ST 40, right side), Chize (尺泽, LU 5, right side), Zusanli (足三里, ST 36, right side), Zhaohai (照海, KI 6, left side), Taichong (太冲h, LR 3, both sides), and Waiqiu (外丘, GB 36, left side) were selected. The treatment was given every other day. After one treatment course, the relation between the long-term cough cases after common cold and Wentong needling method clinical efficacy was observed from aspects of different ages, disease duration and disease degree. Results There were 18 cured cases (60.0%), 8 markedly effective cases (26.7%), 4 effective cases (13.33%), and 0 invalid case (0.0%). The total effective rate was 200%. The treatment efficacy of cough patients after common cold of less than 24 months was better than that of more than 24 months. Along with the increasing of age, the cured and markedly effective rate was of certain downward tendency. Along with the increasing of treatment times, the cured and markedly effective rate increased. Conclusion The clinical efficacy of Wentong needling method is obvious in the treatment of long-term cough cases after common cold.