期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Multi-scale analysis of microstructural evolution and atomic bonding mechanisms in CoCrFeMnNi high-entropy alloys upon cold spray impact
1
作者 R.Nikbakht M.Saadati +2 位作者 H.S.Kim M.Jahazi R.R.Chromik 《Journal of Materials Science & Technology》 2025年第5期263-277,共15页
Large interfacial strains in particles are crucial for promoting bonding in cold spraying(CS),initiated either by adiabatic shear instability(ASI)due to softening prevailing over strain hardening or by hydrostatic pla... Large interfacial strains in particles are crucial for promoting bonding in cold spraying(CS),initiated either by adiabatic shear instability(ASI)due to softening prevailing over strain hardening or by hydrostatic plasticity,which is claimed to promote bonding even without ASI.A thorough microstructural analysis is vital to fully understand the bonding mechanisms at play during microparticle impacts and throughout the CS process.In this study,the HEA CoCrFeMnNi,known for its relatively high strain hardening and resistance to softening,was selected to investigate the microstructure characteristics and bonding mech-anisms in CS.This study used characterization techniques covering a range of length scales,including electron channeling contrast imaging(ECCI),electron backscatter diffraction(EBSD),and high-resolution transmission microscopy(HR-TEM),to explore the microstructure characteristics of bonding and overall structure development of CoCrFeMnNi microparticles after impact in CS.HR-TEM lamellae were prepared using focused ion beam milling.Additionally,the effects of deformation field variables on microstructure development were determined through finite element modeling(FEM)of microparticle impacts.The ECCI,EBSD,and HR-TEM analyses revealed an interplay between dislocation-driven processes and twinning,leading to the development of four distinct deformation microstructures.Significant grain refinement occurs at the interface through continuous dynamic recrystallization(CDRX)due to high strain and temperature rise from adiabatic deformation,signs of softening,and ASI.Near the interface,a necklace-like structure of refined grains forms around grain boundaries,along with elongated grains,resulting from the coexistence of dynamic recovery and discontinuous dynamic recrystallization(DDRX)due to lower temperature rise and strain.Towards the particle or substrate interior,concurrent twinning and dislocation-mediated mechanisms refine the structure,forming straight,curved,and intersected twins.At the top of the particles,only deformed grains with a low dislocation density are observed.Our results showed that DRX induces microstructure softening in highly strained interface areas,facilitating atomic bonding in CoCrFeMnNi.HR-TEM investigation confirms the formation of atomic bonds between particles and substrate,with a gradual change in crystal lattice orientation from the particle to the substrate and the occurrence of some misfit dislocations and vacancies at the interface.Finally,the findings of this research suggest that softening and ASI,even in materials resistant to softening,are required to establish bonding in CS. 展开更多
关键词 Multi-length scale microstructure characteristics of bonding in cold spray DRX-induced softening and its role in bonding Interplay between twinning-induced hardening and DRX-driven softening EBSD&HR-TEM CoCrFeMnNi high entropy alloys
原文传递
Bonding enhancement of cold rolling TA1 P-Ti/AA6061 composite plates via surface oxidation treatment
2
作者 Lun FU Bin YANG +2 位作者 Yun-chang GUO Chao YU Hong XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2864-2880,共17页
TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti... TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%. 展开更多
关键词 TA1 P-Ti/AA6061 composite plate oxidation treatment annealing treatment cold roll bonding
在线阅读 下载PDF
Interfacial bonding mechanism of Cu/Al composite plate produced by corrugated cold roll bonding 被引量:12
3
作者 Tao Wang Xiang-Yu Gao +3 位作者 Zhi-Xiong Zhang Zhong-Kai Ren Yan-Yang Qi Jing-Wei Zhao 《Rare Metals》 SCIE EI CAS CSCD 2021年第5期1284-1293,共10页
Corrugated cold roll bonding(CCRB) produces metal composite plate with improved mechanical properties compared with conventional methods,but the interfacial mechanism is not fully understood.Here,Cu/Al composite plate... Corrugated cold roll bonding(CCRB) produces metal composite plate with improved mechanical properties compared with conventional methods,but the interfacial mechanism is not fully understood.Here,Cu/Al composite plate with good plate shape was produced by CCRB,and the bonding mechanism and strength along the corrugated interface were studied by experiments and finite element simulations.The results showed that the average bonding strength of Cu/Al composite plate produced by CCRB was nearly twice that of conventional composite plate at an average reduction of 40% during rolling.Strong friction shear stresses occurred at the interface of the corrugated composite plate,which promoted the plastic deformation of the metals and accelerated the rupture of the brittle interfacial layer.Electron backscattered diffraction analysis showed that higher degrees of grain elongation and refinement occurred in the matrices at the front waist and trough due to the stronger normal and shear stresses.Energy-dispersive spectroscopy line scans showed that the thickest atomic diffusion layer occurred at the front waist.The present combination of experimental and computational analyses provides insights into the underlying mechanism of mechanically improved metal composites prepared by CCRB. 展开更多
关键词 Corrugated cold roll bonding Cu/Al composite bonding strength Friction shear stress Grain refinement Atomic diffusion layer
原文传递
Formation mechanism and control of aluminum layer thickness fluctuation in embedded aluminum-steel composite sheet produced by cold roll bonding process 被引量:6
4
作者 Chun-yang WANG Yan-bin JIANG +3 位作者 Jian-xin XIE Sheng XU De-jing ZHOU Xiao-jun ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1011-1018,共8页
The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigate... The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigated,the formation mechanism of TFA was analyzed and method to improve the thickness uniformity of the aluminum layer was proposed.The results showed that when the reduction increased,TFA increased gradually.When the reduction was lower than40%,AIT had negligible effect on the TFA,while TFA increased with the decrease of AIT when the reduction was higher than40%.The non-uniformities of the steel surface deformation and the interfacial bonding extent caused by the work-hardened steel surface layer,were the main reasons for the formation of TFA.Adopting an appropriate surface treatment can help to decrease the hardening extent of the steel surface for improving the deformation uniformity during cold roll bonding process,which effectively improved the aluminum thickness uniformity of the embedded aluminum/steel composite sheets. 展开更多
关键词 aluminum.steel composite sheet cold roll bonding work-hardened surface layer thickness fluctuation
在线阅读 下载PDF
Effect of annealing on properties of Al/steel composite plates prepared by surface oxidation treatment before cold roll bonding 被引量:5
5
作者 Lun Fu Yu-fei Zhu +2 位作者 Bin Yang Chao Yu Hong Xiao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第4期749-759,共11页
Al/steel composite plate has a wide application prospect,but great differences in properties between Al and steel are observed.It is difficult to obtain high bonding strength by the traditional cold roll bonding proce... Al/steel composite plate has a wide application prospect,but great differences in properties between Al and steel are observed.It is difficult to obtain high bonding strength by the traditional cold roll bonding process.Al/steel composite plate was thus prepared by cold roll bonding at a reduction rate of 60%after oxidation treatment on the surface to be composited on the steel side.The heat treatment of holding at 400℃ for 1 h and cooling with the furnace was then adopted.The bonding strength,microstructure,and properties of the Al/steel composite plate before and after annealing were analysed and compared through shear test,bending test,tensile test,and micro-characterization.Results show that the shear strengths of the interface before and after annealing are 100 and 80 MPa,respectively.Although the shear strength of the annealed Al/steel composite plate decreases,the bending and overall tensile properties of the composite plate are improved,showing better mechanical properties. 展开更多
关键词 Al/steel composite plate Oxidation treatment Annealing treatment Shear strength cold roll bonding
原文传递
Effect of Mechanical Surface Treatment on the Bonding Mechanism and Properties of Cold‑Rolled Cu/Al Clad Plate 被引量:2
6
作者 Jianchao Han Hui Niu +5 位作者 Sha Li Zhongkai Ren Yi Jia Tao Wang A.I.Plokhikh Qingxue Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第5期212-224,共13页
In the case of valuable cold-rolled Cu/Al clad plates,billet surface treatment before rolling is a significant process that can affect the bonding efficiency and quality.While the current studies primarily focus on th... In the case of valuable cold-rolled Cu/Al clad plates,billet surface treatment before rolling is a significant process that can affect the bonding efficiency and quality.While the current studies primarily focus on the influence of rolling parameters,insufficient attention has been paid to surface treatment.In this study,the effects of mechanical surface treatment on the bonding mechanism and bonding properties of cold-rolled Cu/Al clad plates were investigated.The results showed that different mechanical surface treatments have significant effects on the surface morphology,roughness,and residual stress.In addition,the effect of surface mechanical treatment on bonding quality was also observed to be critical.When the grinding direction was consistent with the rolling direction(RD),the bonding quality of the Cu/Al clad plates was significantly improved.After surface treatment along the RD for 20 s,the Cu/Al clad plates showed the highest shear strength(78 MPa),approximately four times as high as that of the unpolished samples.Simultaneously,the peel strength of this process was also significantly higher than that achieved via the other processes.Finally,on the basis of the surface morphology,roughness,and residual stress,the effect of surface treatment on the bonding mechanism and bonding properties of Cu/Al clad plates was analyzed.This study proposes a deeper understanding of the bonding behavior and bonding mechanism for cold rolled clad plates processed via mechanical surface treatment. 展开更多
关键词 Cu/Al clad plates cold rolling bonding Surface treatment bonding mechanism bonding property
在线阅读 下载PDF
Annealing temperature influence on forming limit curve and fracture toughness of aluminium/silver bilayer sheets 被引量:1
7
作者 Mohammad Delshad GHOLAMI Mojtaba KHODAKARAMI +1 位作者 Mohammad ABADIAN Ramin HASHEMI 《Journal of Central South University》 2025年第1期34-48,共15页
This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre... This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities. 展开更多
关键词 cold roll bonding Ag/Al bilayer sheet mechanical properties forming limit curve fracture toughness
在线阅读 下载PDF
Experimental and Simulation Studies on Cold Welding Sealing Process of Heat Pipes 被引量:5
8
作者 Yong LI Shengle CHEN +2 位作者 Jinlong HUANG Yuying YAN Zhixin ZENG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期332-343,共12页
Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bond... Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (AIB3CID3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided. 展开更多
关键词 cold welding sealing process(CWSP) · bonding strength · Heat pipe · Orthogonal experimen
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部