期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Breaking through the Optimization Limits of Power Factor via Pressure-Decoupled Seebeck Coefficient and Electrical Conductivity
1
作者 Dianzhen Wang Muhammad Faizan +9 位作者 Jinming Zhu Wanting Quan Yanli Chen Qiang Zhou Kuo Bao Yan Li Qiang Tao Lijun Zhang Tian Cui Pinwen Zhu 《Chinese Physics Letters》 2025年第6期140-154,共15页
In thermoelectricity,the inherent coupling between electrical conductivity and Seebeck coefficient represents a fundamental challenge in thermoelectric materials development.Herein,we present a unique pressure-tuning ... In thermoelectricity,the inherent coupling between electrical conductivity and Seebeck coefficient represents a fundamental challenge in thermoelectric materials development.Herein,we present a unique pressure-tuning strategy using compressible layered 2H-MoTe2,achieving an effective decoupling between the electrical conductivity and Seebeck coefficient.The applied pressure simultaneously induces two complementary effects:(1)bandgap reduction that moderately enhances carrier concentration to improve the electrical conductivity,and(2)band convergence that dramatically increases density-of-states effective mass to boost the Seebeck coefficient.This dual mechanism yields an extraordinary 18.5-fold enhancement in the average power factor.First-principles calculations and Boltzmann transport modeling precisely reproduce the experimental observations,validating this pressure-induced decoupling mechanism.The pressure-tuning mechanism provides a feasible and effective strategy for breaking through the optimization limits of the power factor,facilitating the design of high-performance thermoelectric materials. 展开更多
关键词 pressure tuning thermoelectric materials enhances carrier concentration electrical conductivity seebeck coefficient seebeck coefficientthe applied pressure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部