Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)at...Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings.展开更多
In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperat...In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperature according to μ(0)=°,k(0)=08,v(0)=07,withα,>0,β≥0.We prove the global existence of a unique strong solution provided that ■ is suitably small.In addition,we also get some results of the large-time behavior and exponential decay estimates.展开更多
A comprehensive understanding of exact seismic P-wave reflection and transmission(R/T)coefficients at imperfectly welded or non-welded contact interfaces holds paramount importance in the realm of seismic exploration....A comprehensive understanding of exact seismic P-wave reflection and transmission(R/T)coefficients at imperfectly welded or non-welded contact interfaces holds paramount importance in the realm of seismic exploration.Nonetheless,scant attention has been devoted in previous literature to the investigation of stress-dependent exact R/T coefficients in horizontal transversely isotropic(HTI)media,characterized by a horizontal symmetry axis,at such interfaces.Addressing this scholarly gap,we present exact R/T coefficient formulations specifically tailored to an imperfectly welded contact interface separating two HTI media under the influence of in-situ horizontal stress.We begin by deriving the equation of motion for a stressed HTI medium,utilizing the theoretical framework of acoustoelasticity to examine the impact of in-situ horizontal stress on the overarching elastic properties of HTI media.Precise boundary conditions are then established at the imperfectly welded contact interface by applying generalized stress-strain relationships and linear-slip theory,with the influence of in-situ horizontal stress on the interface further explored through the linear-slip model.By integrating these elements with the seismic wave displacement equation,we derive exact R/T coefficient formulations applicable to an imperfectly welded contact interface between two HTI media.Numerical analyses are conducted to elucidate the effects of in-situ horizontal stress on critical parameters such as rock density,seismic wave velocity,Thomsen-type anisotropy parameters,R/T coefficients,and seismic reflection responses at the imperfectly welded contact interface.Furthermore,the proposed formulations are frequency-dependent,with the imperfectly welded contact interface acting as a frequency-selective filter for both reflected and transmitted waves.Notably,under conditions of sufficiently large incident angles,the sensitivity of R/T coefficients to key influencing factors increases significantly.The derived R/T coefficient formulations and the accompanying numerical results offer valuable insights for fracture characterization,stress-dependent parameter inversion,and in-situ stress detection.展开更多
Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al_(2)O_(3)·51.6SiO_(2)·7.0TiO_(2),we systematica...Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al_(2)O_(3)·51.6SiO_(2)·7.0TiO_(2),we systematically investigated impacts of thermal treatment protocols on T dependence of coefficients of thermal expansion(CTE).Except for the phase compositions,morphology is identified as another important factor to control the T dependence of CTE.By using X-ray diffraction and scanning electron microscope,various modes of T dependence of CTE for crystallized glasses are ascribed to their different phase compositions and microstructure with finely dispersed nanoparticles.These understanding contributes to the further modification of CTE of the crystalized glass by altering their thermal treatment scenarios.展开更多
Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational ...Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational pumping effect, mainstream pressure asymmetry, rotor–stator interaction,and unsteady flow structures, complicating the flow. To investigate the impact of rotor–stator interaction on ingestion, this paper decouples the model to include only the mainstream. This research employs experiments and numerical simulations to examine the effects of varying the flow coefficient through changes in rotational speed and mainstream flow rate. The main objective is to understand the influence of different rotor–stator interactions on the mainstream pressure field, accompanied by mechanistic explanations. The findings reveal inconsistent effects of the two methods for changing the flow coefficient on the mainstream pressure field. Particularly, the pressure distribution on the vane side primarily depends on the mainstream flow rate, while the pressure on the blade side is influenced by the mainstream flow rate and the attack angle represented by the flow coefficient. A larger angle of attack angle can increase pressure on the blade side, even surpassing the pressure on the vane side. Assessing the degree of mainstream pressure unevenness solely based on the pressure difference on the vane side is insufficient. This research provides a basis for subsequent studies on the influence of coupled real turbine rotor–stator interaction on gas ingestion.展开更多
We employ the Green–Kubo(G-K)and Einstein relations to estimate the self-diffusion coefficients(denoted as D_(G)and D_(E),respectively)in two-dimensional(2D)strongly coupled dusty plasmas(SC-DPs)via equilibrium molec...We employ the Green–Kubo(G-K)and Einstein relations to estimate the self-diffusion coefficients(denoted as D_(G)and D_(E),respectively)in two-dimensional(2D)strongly coupled dusty plasmas(SC-DPs)via equilibrium molecular dynamics(EMD)simulations.D_(G)and D_(E)are computed for a broad domain of screening length(κ)and coupling parameters(Γ)along with different system sizes.It is observed that both D_(G)and D_(E)decrease linearly with increasing Г in warm liquid states and increase with increasingκ.In cold liquid states,the Einstein relation accurately predicts D_(E)in 2D SC-DPs because diffusion motion is close to normal diffusion,but the G-K relation provides overestimations of D_(G),because VACF indicates anomalous diffusion;thus,D_(G)is not accurate.Our new simulation outcomes reveal that D_(G)and D_(E)remain independent of system sizes.Furthermore,our investigations demonstrate that at higher temperatures,D_(G)and D_(E)converge,suggesting diffusion motion close to normal diffusion,while at lower temperatures,these two values diverge.We find reasonable agreement by comparing current and existing numerical,theoretical and experimental data.Moreover,when normalizing diffusion coefficients by the Einstein frequency and testing against the universal temperature scaling law,D_(G)deviates from theoretical curves at low temperatures and κ,whereas D_(E)only disagrees with theory at very smallκ(■0.10).These findings provide valuable insight into diagnosing dust component parameters within 2D DP systems and contribute to the broader understanding of diffusion processes in DP environments.展开更多
In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension ...In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m.展开更多
Wind tunnel experiment and CFD(computational fluid dynamics)simulation with LES(large eddy simulation)have been conducted to investigate the characteristics of peak wind force coefficients of porous panels mounted on ...Wind tunnel experiment and CFD(computational fluid dynamics)simulation with LES(large eddy simulation)have been conducted to investigate the characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings.First,aerodynamic modelling of porous panels was discussed.The relation between pressure loss coefficient and porosity was obtained.Then,a wind tunnel experiment was conducted to measure the wind forces(net wind pressures)acting on solid and porous panels mounted on the roof of a high-rise building.Because it was difficult to measure the pressures on both sides of thin,porous panel at the same location simultaneously,we proposed to use the roof edge pressures near the panel for the panel’s inside-surface pressures.This experimental method was validated by a CFD simulation reproducing the wind tunnel experiment.The characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings were made clear.Finally,positive and negative peak wind force coefficients for designing the rooftop porous panels were proposed.展开更多
To minimize the calculation errors in the sound absorption coefficient resulting from inaccurate measurements of flow resistivity,a simple method for determining the sound absorption coefficient of soundabsorbing mate...To minimize the calculation errors in the sound absorption coefficient resulting from inaccurate measurements of flow resistivity,a simple method for determining the sound absorption coefficient of soundabsorbing materials is proposed.Firstly,the sound absorption coefficients of a fibrous sound-absorbing material are measured at two different frequencies using the impedance tube method.Secondly,utilizing the empirical formulas for the wavenumber and acoustic impedance in the fibrous material,the flow resistivity and porosity of the sound-absorbing materials are calculated using the MATLAB cycle program.Thirdly,based on the values obtained through reverse calculations,the sound absorption coefficient,the real and the imaginary parts of the acoustic impedance of the sound-absorbing material at different frequencies are theoretically computed.Finally,the accuracy of these theoretical calculations is verified through experiments.The experimental results indicate that the calculated values are basically consistent with the measured values,demonstrating the feasibility and reliability of this method.展开更多
This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the beh...This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the behavior of the coefficients when time variable tends to positive infinity.Moreover,the global existence of solutions are discussed for non-positive exponents.展开更多
The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in w...The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in which the experimental results obtained from our previous studies(2019,2025)are used.Focus is on the distributions of the peak wind force coefficients along the centerline parallel to the wind direction considering that domed free roof is an axisymmetric body.Empirical formulas are provided to the distributions of mean wind force coefficient,RMS(root mean square)fluctuating wind force coefficient and peak factors as a function of the rise/span ratio of the roof and the turbulence intensity of the approach flow in the along-wind direction at the mean roof height.The proposed methods are validated by the experimental results for the peak wind force coefficients.The methods would provide useful information to structural engineers when estimating the design wind loads on cladding/components of domed free roofs.展开更多
[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for imp...[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach.展开更多
We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th...We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.展开更多
The rise in breast cancer diagnoses among Chinese women has necessitated the use of X-ray breast screening,which carries a radiation risk.This study aimed to provide a dosimetry protocol for the Chinese female populat...The rise in breast cancer diagnoses among Chinese women has necessitated the use of X-ray breast screening,which carries a radiation risk.This study aimed to provide a dosimetry protocol for the Chinese female population to replace the traditional standard that utilizes simplified breast models,for the accurate estimation of the mean glandular dose of a patient undergoing digital breast tomosynthesis(DBT).The first set of detailed Chinese female breast models and representative breast parameters was constructed.Considering backscatter radiation and computational efficiency,we improved the combination of these models and the Chinese reference adult female whole-body voxel phantom.Image acquisition for four commercial DBT systems that are widely employed in China was simulated using the Monte Carlo method to obtain the normalized glandular dose coefficients of DBT(D_(gN)^(DBT))and the glandular depth dose(D_(g)^(dep)(z))for different breast characteristics and X-ray spectra.We calculated a series of D_(gN)^(DBT) values for breasts with different percentage mass glandularities(5%,25%,50%,75%,and 100%)and compressed breast thicknesses(2,3,4,5,6,and 7 cm)at various tube potentials(25,28,30,32,35,and 49 kV)and target/filter combinations(W/Rh,W/Al,Mo/Mo,Rh/Rh,and Rh/Ag).The parameter dependence of the breast characteristics and beam conditions on D_(gN)^(DBT) in detailed breast models was investigated.The D_(gN)^(DBT) results were 14.6-51.0%lower than those of the traditional dosimetry standard in China.The difference in D_(gN)^(DBT) was mainly due to a decrease in the depth of the main energy deposition area caused by the glandular distribution along the depth direction.The results obtained in this study may be used to improve breast dosimetry in China and provide more detailed information on risk assessment during DBT.展开更多
Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate ...Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate dynamical model of industrial robots,which greatly hinders the realization of a stable,fast and accurate trajectory tracking control.Therefore,the general expression of the constraint relation in the explicit dynamic equation of the multi-DOF industrial robot is derived on the basis of solving the Jacobian matrix and Hessian matrix by using the kinematic influence coefficients method.Moreover,an explicit dynamic equation with general constraint relation expression is established based on the Udwadia-Kalaba theory.The problem of increasing the time of establishing constraint relationship when the multi-DOF industrial robots complete complex task constraints is solved.With the SCARA robot as the research object,the simulation results show that the proposed method can provide a new idea for industrial robot system modeling with complex constraints.展开更多
Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modula...Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.展开更多
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi...This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.展开更多
This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied ...This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.展开更多
Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general...Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.展开更多
Determining the optical properties of media remains an important part of scientific research. Knowledge of these optical properties, particularly absorption and diffusion coefficients, has direct applications in biome...Determining the optical properties of media remains an important part of scientific research. Knowledge of these optical properties, particularly absorption and diffusion coefficients, has direct applications in biomedical therapeutic diagnostics. The determination of these coefficients was previously reserved for optically dilute media. Recently, a technique called Structured Laser Illumination Planar Imaging (SLIPI) has been developed for measuring extinction coefficients in dense media. For such a medium and technique, no study has reported the determination of absorption and scattering coefficients. In this study, we have developed a simple calculation method based on the combination of Kubelka-Munk relations and extinction, both functions of the medium’s absorption and diffusion coefficients. The equations thus developed enable absorption and diffusion coefficients to be easily calculated from extinction coefficient measurements alone, using the SLIPI technique. The analysis method thus developed was applied to ten (10) milk solutions of different concentrations considered to be predominantly diffusive, and to ten (10) coffee solutions of different concentrations considered to be predominantly absorbent. The coefficient values obtained have been analysed and compared to the literature ones and they would be satisfactory.展开更多
文摘Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings.
基金supported by the National Natural Science Foundation of China(No.11931013)the Natural Science Foundation of Guangxi Province(No.2022GXNSFDA035078)the Foundamental Research Funds for the Central Universities,CHD(No.300102122115).
文摘In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperature according to μ(0)=°,k(0)=08,v(0)=07,withα,>0,β≥0.We prove the global existence of a unique strong solution provided that ■ is suitably small.In addition,we also get some results of the large-time behavior and exponential decay estimates.
基金the sponsorship of the National Natural Science Foundation of China(42474172,42130810)the Science and Technology Innovation Program of Hunan Province(2022RC1238)+1 种基金the Natural Science Foundation of Hunan Province(2025JJ20036,2023JJ30663)the Changzhou Science and Technology Support Project(CE20235069)。
文摘A comprehensive understanding of exact seismic P-wave reflection and transmission(R/T)coefficients at imperfectly welded or non-welded contact interfaces holds paramount importance in the realm of seismic exploration.Nonetheless,scant attention has been devoted in previous literature to the investigation of stress-dependent exact R/T coefficients in horizontal transversely isotropic(HTI)media,characterized by a horizontal symmetry axis,at such interfaces.Addressing this scholarly gap,we present exact R/T coefficient formulations specifically tailored to an imperfectly welded contact interface separating two HTI media under the influence of in-situ horizontal stress.We begin by deriving the equation of motion for a stressed HTI medium,utilizing the theoretical framework of acoustoelasticity to examine the impact of in-situ horizontal stress on the overarching elastic properties of HTI media.Precise boundary conditions are then established at the imperfectly welded contact interface by applying generalized stress-strain relationships and linear-slip theory,with the influence of in-situ horizontal stress on the interface further explored through the linear-slip model.By integrating these elements with the seismic wave displacement equation,we derive exact R/T coefficient formulations applicable to an imperfectly welded contact interface between two HTI media.Numerical analyses are conducted to elucidate the effects of in-situ horizontal stress on critical parameters such as rock density,seismic wave velocity,Thomsen-type anisotropy parameters,R/T coefficients,and seismic reflection responses at the imperfectly welded contact interface.Furthermore,the proposed formulations are frequency-dependent,with the imperfectly welded contact interface acting as a frequency-selective filter for both reflected and transmitted waves.Notably,under conditions of sufficiently large incident angles,the sensitivity of R/T coefficients to key influencing factors increases significantly.The derived R/T coefficient formulations and the accompanying numerical results offer valuable insights for fracture characterization,stress-dependent parameter inversion,and in-situ stress detection.
基金Funded by National Natural Science Foundation of China(No.52172007)Jiangsu Science and Technology Innovation Project for Carbon Peaking and Carbon Neutrality(No.BE2022035)。
文摘Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al_(2)O_(3)·51.6SiO_(2)·7.0TiO_(2),we systematically investigated impacts of thermal treatment protocols on T dependence of coefficients of thermal expansion(CTE).Except for the phase compositions,morphology is identified as another important factor to control the T dependence of CTE.By using X-ray diffraction and scanning electron microscope,various modes of T dependence of CTE for crystallized glasses are ascribed to their different phase compositions and microstructure with finely dispersed nanoparticles.These understanding contributes to the further modification of CTE of the crystalized glass by altering their thermal treatment scenarios.
基金the National Natural Science Foundation Outstanding Youth Foundation (Grant No.52122603)the National Science and Technology Major Project (J2019-Ⅲ-0003–0046)。
文摘Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational pumping effect, mainstream pressure asymmetry, rotor–stator interaction,and unsteady flow structures, complicating the flow. To investigate the impact of rotor–stator interaction on ingestion, this paper decouples the model to include only the mainstream. This research employs experiments and numerical simulations to examine the effects of varying the flow coefficient through changes in rotational speed and mainstream flow rate. The main objective is to understand the influence of different rotor–stator interactions on the mainstream pressure field, accompanied by mechanistic explanations. The findings reveal inconsistent effects of the two methods for changing the flow coefficient on the mainstream pressure field. Particularly, the pressure distribution on the vane side primarily depends on the mainstream flow rate, while the pressure on the blade side is influenced by the mainstream flow rate and the attack angle represented by the flow coefficient. A larger angle of attack angle can increase pressure on the blade side, even surpassing the pressure on the vane side. Assessing the degree of mainstream pressure unevenness solely based on the pressure difference on the vane side is insufficient. This research provides a basis for subsequent studies on the influence of coupled real turbine rotor–stator interaction on gas ingestion.
基金support of the Fundamental Research Funds for the Central Universities of China(Grant No.2019ZDPY16).
文摘We employ the Green–Kubo(G-K)and Einstein relations to estimate the self-diffusion coefficients(denoted as D_(G)and D_(E),respectively)in two-dimensional(2D)strongly coupled dusty plasmas(SC-DPs)via equilibrium molecular dynamics(EMD)simulations.D_(G)and D_(E)are computed for a broad domain of screening length(κ)and coupling parameters(Γ)along with different system sizes.It is observed that both D_(G)and D_(E)decrease linearly with increasing Г in warm liquid states and increase with increasingκ.In cold liquid states,the Einstein relation accurately predicts D_(E)in 2D SC-DPs because diffusion motion is close to normal diffusion,but the G-K relation provides overestimations of D_(G),because VACF indicates anomalous diffusion;thus,D_(G)is not accurate.Our new simulation outcomes reveal that D_(G)and D_(E)remain independent of system sizes.Furthermore,our investigations demonstrate that at higher temperatures,D_(G)and D_(E)converge,suggesting diffusion motion close to normal diffusion,while at lower temperatures,these two values diverge.We find reasonable agreement by comparing current and existing numerical,theoretical and experimental data.Moreover,when normalizing diffusion coefficients by the Einstein frequency and testing against the universal temperature scaling law,D_(G)deviates from theoretical curves at low temperatures and κ,whereas D_(E)only disagrees with theory at very smallκ(■0.10).These findings provide valuable insight into diagnosing dust component parameters within 2D DP systems and contribute to the broader understanding of diffusion processes in DP environments.
基金supported by the National Natural Science Foundation of China(42276199).
文摘In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m.
文摘Wind tunnel experiment and CFD(computational fluid dynamics)simulation with LES(large eddy simulation)have been conducted to investigate the characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings.First,aerodynamic modelling of porous panels was discussed.The relation between pressure loss coefficient and porosity was obtained.Then,a wind tunnel experiment was conducted to measure the wind forces(net wind pressures)acting on solid and porous panels mounted on the roof of a high-rise building.Because it was difficult to measure the pressures on both sides of thin,porous panel at the same location simultaneously,we proposed to use the roof edge pressures near the panel for the panel’s inside-surface pressures.This experimental method was validated by a CFD simulation reproducing the wind tunnel experiment.The characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings were made clear.Finally,positive and negative peak wind force coefficients for designing the rooftop porous panels were proposed.
基金National Natural Science Foundation of China(No.51705545)。
文摘To minimize the calculation errors in the sound absorption coefficient resulting from inaccurate measurements of flow resistivity,a simple method for determining the sound absorption coefficient of soundabsorbing materials is proposed.Firstly,the sound absorption coefficients of a fibrous sound-absorbing material are measured at two different frequencies using the impedance tube method.Secondly,utilizing the empirical formulas for the wavenumber and acoustic impedance in the fibrous material,the flow resistivity and porosity of the sound-absorbing materials are calculated using the MATLAB cycle program.Thirdly,based on the values obtained through reverse calculations,the sound absorption coefficient,the real and the imaginary parts of the acoustic impedance of the sound-absorbing material at different frequencies are theoretically computed.Finally,the accuracy of these theoretical calculations is verified through experiments.The experimental results indicate that the calculated values are basically consistent with the measured values,demonstrating the feasibility and reliability of this method.
基金Supported by Shandong Provincial Natural Science Foundation(Grant Nos.ZR2021MA003 and ZR2020MA020).
文摘This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the behavior of the coefficients when time variable tends to positive infinity.Moreover,the global existence of solutions are discussed for non-positive exponents.
文摘The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in which the experimental results obtained from our previous studies(2019,2025)are used.Focus is on the distributions of the peak wind force coefficients along the centerline parallel to the wind direction considering that domed free roof is an axisymmetric body.Empirical formulas are provided to the distributions of mean wind force coefficient,RMS(root mean square)fluctuating wind force coefficient and peak factors as a function of the rise/span ratio of the roof and the turbulence intensity of the approach flow in the along-wind direction at the mean roof height.The proposed methods are validated by the experimental results for the peak wind force coefficients.The methods would provide useful information to structural engineers when estimating the design wind loads on cladding/components of domed free roofs.
文摘[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach.
基金supported by National Natural Science Foundation of China(12061080,12161087 and 12261093)the Science and Technology Project of the Education Department of Jiangxi Province(GJJ211601)supported by National Natural Science Foundation of China(11871305).
文摘We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.
基金supported by the National Natural Science Foundation of China(Nos.U2167209 and 12175114)the National Key R&D Program of China(No.2021YFF0603600).
文摘The rise in breast cancer diagnoses among Chinese women has necessitated the use of X-ray breast screening,which carries a radiation risk.This study aimed to provide a dosimetry protocol for the Chinese female population to replace the traditional standard that utilizes simplified breast models,for the accurate estimation of the mean glandular dose of a patient undergoing digital breast tomosynthesis(DBT).The first set of detailed Chinese female breast models and representative breast parameters was constructed.Considering backscatter radiation and computational efficiency,we improved the combination of these models and the Chinese reference adult female whole-body voxel phantom.Image acquisition for four commercial DBT systems that are widely employed in China was simulated using the Monte Carlo method to obtain the normalized glandular dose coefficients of DBT(D_(gN)^(DBT))and the glandular depth dose(D_(g)^(dep)(z))for different breast characteristics and X-ray spectra.We calculated a series of D_(gN)^(DBT) values for breasts with different percentage mass glandularities(5%,25%,50%,75%,and 100%)and compressed breast thicknesses(2,3,4,5,6,and 7 cm)at various tube potentials(25,28,30,32,35,and 49 kV)and target/filter combinations(W/Rh,W/Al,Mo/Mo,Rh/Rh,and Rh/Ag).The parameter dependence of the breast characteristics and beam conditions on D_(gN)^(DBT) in detailed breast models was investigated.The D_(gN)^(DBT) results were 14.6-51.0%lower than those of the traditional dosimetry standard in China.The difference in D_(gN)^(DBT) was mainly due to a decrease in the depth of the main energy deposition area caused by the glandular distribution along the depth direction.The results obtained in this study may be used to improve breast dosimetry in China and provide more detailed information on risk assessment during DBT.
基金the Beijing Municipal Scienceand Technology Project (No.KM202111417006)the Academic Research Projects of Beijing Union University (Nos.ZK10202305 and ZK80202004)the Beijing Municipal Science and Technology Project (No.KM202111417005)。
文摘Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate dynamical model of industrial robots,which greatly hinders the realization of a stable,fast and accurate trajectory tracking control.Therefore,the general expression of the constraint relation in the explicit dynamic equation of the multi-DOF industrial robot is derived on the basis of solving the Jacobian matrix and Hessian matrix by using the kinematic influence coefficients method.Moreover,an explicit dynamic equation with general constraint relation expression is established based on the Udwadia-Kalaba theory.The problem of increasing the time of establishing constraint relationship when the multi-DOF industrial robots complete complex task constraints is solved.With the SCARA robot as the research object,the simulation results show that the proposed method can provide a new idea for industrial robot system modeling with complex constraints.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03090200)by National Natural Science Foundation of China(Nos.11975231,12175277 and 12305249).
文摘Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.
文摘This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.
文摘This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.
文摘Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.
文摘Determining the optical properties of media remains an important part of scientific research. Knowledge of these optical properties, particularly absorption and diffusion coefficients, has direct applications in biomedical therapeutic diagnostics. The determination of these coefficients was previously reserved for optically dilute media. Recently, a technique called Structured Laser Illumination Planar Imaging (SLIPI) has been developed for measuring extinction coefficients in dense media. For such a medium and technique, no study has reported the determination of absorption and scattering coefficients. In this study, we have developed a simple calculation method based on the combination of Kubelka-Munk relations and extinction, both functions of the medium’s absorption and diffusion coefficients. The equations thus developed enable absorption and diffusion coefficients to be easily calculated from extinction coefficient measurements alone, using the SLIPI technique. The analysis method thus developed was applied to ten (10) milk solutions of different concentrations considered to be predominantly diffusive, and to ten (10) coffee solutions of different concentrations considered to be predominantly absorbent. The coefficient values obtained have been analysed and compared to the literature ones and they would be satisfactory.