期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of Variation of the Coefficient of Friction on the Temperature at the Level of the Fault Lips
1
作者 Francis Olivier Djiogang Fidèle Koumetio +2 位作者 David Yemele Guy Pascal Konga Guillaume L. Ymeli 《Open Journal of Earthquake Research》 2022年第3期45-72,共28页
Earth’s crust is an anisotropic and purely heterogeneous medium, which is justified by existence of different discontinuities;our study aims to show the effect of the variation of coefficient of friction on the evolu... Earth’s crust is an anisotropic and purely heterogeneous medium, which is justified by existence of different discontinuities;our study aims to show the effect of the variation of coefficient of friction on the evolution of temperature and its impact on seismic forecasting. In this work, we are model in 2D the variation of thermal energy and temperature produced by friction at the level of fault lip as function of depth of the seismic focus and at different value of time. Earthquakes are born when the energy accumulated by friction at the level of fault is suddenly released causing damage, sometimes noticeable on the surface of earth (macroseisms), and sometimes not at all noticeable on the surface of earth (microseisms), then energy which occurs before is important to forecasting earthquake. Assuming that coefficient of friction is variable, our results have enabled us to highlight the fact that, the greater the coefficient of friction, more the temperature increases, although the temperature profile increase over time but not linearly reflecting the presence of different asperities and discontinuities zone;slip generated at the level of fault occur a variation of temperature on specific points called roughness in common agreement with the literature. A large part of energy produced by friction is dissipated in heat causing a local increases in temperature which a very short duration and called flash contact temperature, and that despite the fact that the temperature evolved in time and space, it all converged towards a perfectly distinguishable fixed point. 展开更多
关键词 EARTHQUAKES coefficient of friction Nucleation Phase Temperature Variation Energy Variation Asperity Point
在线阅读 下载PDF
AFM probe with the U-shaped cross-sectional cantilever for measuring the ultra-low coefficient of friction of 10^(–6)
2
作者 Yushan CHEN Liang JIANG Linmao QIAN 《Friction》 SCIE EI CAS CSCD 2024年第8期1707-1715,F0004,共10页
Accurately measuring the coefficient of friction(COF)is the fundamental prerequisite of superlubricity research.This study aimed to reduce the COF measurement resolutionΔμof atomic force microscopy(AFM).Based on the... Accurately measuring the coefficient of friction(COF)is the fundamental prerequisite of superlubricity research.This study aimed to reduce the COF measurement resolutionΔμof atomic force microscopy(AFM).Based on the theoretical model,a distinctive strategy was adopted to reduceΔμby optimizing the cantilever’s cross-section of the AFM probe,inspired by civil engineering.Δμcan be reduced by decreasing the width of the horizontal side wR and the wall thickness t and increasing the width of the vertical side wH.Moreover,the I-shape demonstrates the highest reduction inΔμ,followed by the U-shape.Considering the processability,the AFM probe with the U-shaped cross-sectional cantilever was investigated further,and the dimensions are 35μm wR,3.5μm wH,0.5μm t,50μm l(cantilever length),and 23μm htip(tip height).The finite element analysis results confirm its reliability.After being fabricated and calibrated,the AFM probe achieves the minimalΔμof 1.9×10^(–6)under the maximum normal force so far.Additionally,the friction detection capability of the fabricated AFM probe improves by 78 times compared to the commercial tipless-force modulation mode(TL-FM)AFM probe with the conventional solid rectangular cross-sectional cantilever.This study provides a powerful tool for measuring 10^(–6)COF. 展开更多
关键词 atomic force microscopy SUPERLUBRICITY coefficient of friction PROBE CANTILEVER
原文传递
Application of Various Optimisation Methods in the Multi-Optimisation for Tribological Properties of Al-B_(4)C Composites
3
作者 Sandra Gajevic Slavica Miladinovic +3 位作者 Jelena Jovanovic Onur Güler SerdarÖzkaya Blaža Stojanovic 《Computers, Materials & Continua》 2025年第9期4341-4361,共21页
This paper presents an investigation of the tribological performance of AA2024–B_(4)C composites,with a specific focus on the influence of reinforcement and processing parameters.In this study three input parameters ... This paper presents an investigation of the tribological performance of AA2024–B_(4)C composites,with a specific focus on the influence of reinforcement and processing parameters.In this study three input parameters were varied:B_(4)C weight percentage,milling time,and normal load,to evaluate their effects on two output parameters:wear loss and the coefficient of friction.AA2024 alloy was used as the matrix alloy,while B_(4)C particles were used as reinforcement.Due to the high hardness and wear resistance of B_(4)C,the optimized composite shows strong potential for use in aerospace structural elements and automotive brake components.The optimisation of tribological behaviour was conducted using a Taguchi-Grey Relational Analysis(Taguchi-GRA)and the Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).A total of 27 combinations of input parameters were analysed,varying the B_(4)C content(0,10,and 15 wt.%),milling time(0,15,and 25 h),and normal load(1,5,and 10 N).Wear loss and the coefficient of friction were numerically evaluated and selected as criteria for optimisation.Artificial Neural Networks(ANNs)were also applied for two outputs simultaneously.TOPSIS identified Alternative 1 as the optimal solution,confirming the results obtained using the Taguchi Grey method.The optimal condition obtained(10 wt.%B_(4)C,25 h milling time,10 N load)resulted in a minimum wear loss of 1.7 mg and a coefficient of friction of 0.176,confirming significant enhancement in tribological behaviour.Based on the results,both the B_(4)C content and the applied processing conditions have a significant impact on wear loss and frictional properties.This approach demonstrates high reliability and confidence,enabling the design of future composite materials with optimal properties for specific applications. 展开更多
关键词 Aluminium composites B_(4)C reinforcement taguchi-grey artificial neural networks AHP-TOPSIS optimisation wear loss coefficient of friction
在线阅读 下载PDF
Effect of CNT content on microstructure and tribological properties of CNTs/AlSi10Mg composites by LPBF
4
作者 Li-yi Jiang Chao-yi Shen +6 位作者 Ting-ting Liu Chang-dong Zhang Xiang Su Wei-wei Xu Bo-xiang Wang Zhi-xiang Qi Wen-he Liao 《China Foundry》 2025年第4期439-448,共10页
In this study,carbon nanotubes(CNTs)/AlSi10Mg composite parts with CNTs contents ranging from 0.0 to 2.0wt.%were successfully fabricated via laser powder bed fusion(LPBF)with laser scan speeds ranging from 900 to 1,90... In this study,carbon nanotubes(CNTs)/AlSi10Mg composite parts with CNTs contents ranging from 0.0 to 2.0wt.%were successfully fabricated via laser powder bed fusion(LPBF)with laser scan speeds ranging from 900 to 1,900 mm·s^(-1).Uniform dispersion of CNTs in the powders can be achieved when their content is below 2.0wt.%.In the LPBF samples,the morphology of the CNTs is found to be directly related to their content.Especially,the length of CNTs in samples prepared by LPBF increases as the CNT content increases.The length of CNTs is approximately 200-300 nm in the 1.0wt.%CNTs/AlSi10Mg composites and approximately 500-1,000 nm in the 2.0wt.%CNTs/AlSi10Mg composites.The hardness of the composites reaches its highest value of 143.3 HV when the CNTs content is 1.0wt.%and the laser scan speed is 1,300 mm·s^(-1).It is found that the self-lubricating properties of the CNTs improve the tribological properties of the composites.The coefficient of friction(CoF)and wear rate of the samples decrease with increasing CNT content.At a CNTs content of 2.0wt.%,the CoF and wear rate of the composite decrease by approximately 14%and 30%,respectively,compared to the unreinforced matrix.The presence of CNTs leads to a more complete and refined network microstructure within the samples.Both the CNTs and the aluminum carbide contribute to the Orowan mechanism and the Hall-Petch effect within the matrix. 展开更多
关键词 carbon nanotubes(CNTs) aluminum matrix composites laser powder bed fusion(LPBF) HARDNESS coefficient of friction(Cof)
在线阅读 下载PDF
Determination of the Friction Coefficient in the Flat Strip Drawing Test
5
作者 Anvar Makhkamov 《Engineering(科研)》 2021年第11期595-604,共10页
Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces w... Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction. 展开更多
关键词 TRIBOLOGY friction ROUGHNESS Sheet Metal Forming LUBRICANT Steel Sheet Tool Surface coefficient of friction Normal Force Sliding Speed Contact Pressure Strip Drawing Test
在线阅读 下载PDF
Friction and wear properties of in-situ synthesized Al_2O_3 reinforced aluminum composites 被引量:4
6
作者 蒋小松 王乃娟 朱德贵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2352-2358,共7页
Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of ... Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear. 展开更多
关键词 Al-5%Si-Al2O3 composites friction and wear coefficient of friction load sliding speed
在线阅读 下载PDF
Dry Friction and Wear Characteristics of Impregnated Graphite in a Corrosive Environment 被引量:18
7
作者 JIA Qian YUAN Xiaoyang +2 位作者 ZHANG Guoyuan DONG Guangneng ZHAO Weigang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期965-971,共7页
Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts,but the experimental research abo... Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts,but the experimental research about it are few.In this paper,three kinds of impregnated graphite samples are prepared with different degree of graphitization,the tribological properties of these samples in the dry friction environment and in a corrosive environment are analyzed and contrasted.The tribo-test results show that the friction coefficient of samples is reduced and the amount of wear of samples increase when the graphitization degree of samples increases in dry friction condition.While in a corrosive environment(samples are soaked N2O4),the friction coefficient and amount of wear are changed little if the graphitization degree of samples are low.If the degree of graphitization increase,the friction coefficient and amount of wear of samples increase too,the amount of wear is 2 to 3 times as the samples tested in the non-corrosive environment under pv value of 30MPa?m/s.The impregnated graphite,which friction coefficient is stable and graphitization degree is in mid level,such#2,is more appropriate to have a work in the corrosion conditions.In this paper,preparation and tribological properties especially in corrosive environment of the impregnated graphite is studied,the research conclusion can provide an experimental and theoretical basis for the selection and process improvement of graphite materials,and also provide some important design parameters for contact seal works in a corrosive environment. 展开更多
关键词 corrosive environment impregnated graphite GRAPHITIZATION dry friction coefficient of friction amount of wear
在线阅读 下载PDF
Friction and Wear Performances of Cathodic Arc Ion Plated TiAlSiN Coating under Oil Lubricated Condition 被引量:1
8
作者 沈辉 KONG Weicheng +2 位作者 TANG Chengjian LI Baomin 孔德军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1301-1305,共5页
TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning elect... TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies, distributions of chemical elements and profiles of worn tracks were also researched using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and optical microscope(OM), respectively. The friction-wear performances of TiAlSiN coating under oil lubricated and dry fiction conditions were investigated, and the wear mechanisms of TiAlSiN coating were discussed. The experimental results show that the coating is primarily composed of(Ti, Al)N, AlTiN, and TiN hard phases, Si_3N_4 exists between the(Ti, Al)N crystal grains, increasing the coating microhardness to 3200 HV. The TiAlSiN coating has excellent performances of reducing friction and wear resistance, the average coefficient of friction(COF) of TiAlSiN coating under oil lubricated condition is only 0.05, lowered than the average COF of 0.211 under dry friction condition, the wear rate decreases by about 81.2% compared with that under dry friction condition. The wear mechanism of TiAlSiN coating under oil lubricated and dry friction conditions is composed of abrasive wear, fatigue wear, and abrasive wear, respectively. The internal friction of oil lubrication is a main factor of decreasing fatigue wear. 展开更多
关键词 cathodic arc ion plating (CAIP) TiAISiN coating coefficient of friction (Cof oillubrication dry friction
原文传递
Biomimetic Surface Texturing with Tunable Stimulus-Responsive Friction Anisotropy
9
作者 Khan Rajib Hossain Yuanhua Zheng +3 位作者 Xinle Yao Haiyuan Hu Zhongying Ji Xiaolong Wang 《Journal of Bionic Engineering》 CSCD 2024年第6期2942-2954,共13页
Micro-and nano-structures are intentionally incorporated into various biological surfaces,such as fish scales,snakeskin,and burr-covered plant leaves,to enhance their interactions with other surfaces.The mechanical an... Micro-and nano-structures are intentionally incorporated into various biological surfaces,such as fish scales,snakeskin,and burr-covered plant leaves,to enhance their interactions with other surfaces.The mechanical anisotropy affects friction,interlocking,propulsion,and mobility on substrates.This study investigates a novel method for developing a robust,stratified,soft,lubricating coating on a surface.3-Methacryloyloxypropyl-trimethoxysilane(MPS)is a cohesive adhesion promoter that functions by infiltrating Polydimethylsiloxane(PDMS)silicone elastomers to maintain low friction levels and high mechanical load-bearing capacity.MPS makes it easier for organic and inorganic materials to adhere to the surface of the initiator layer P(AAm-co-AA-co-PDMS/Fe).We investigate how the tough hydrogel layer of the module impacts the lubricating ability of the multilayer coating when the tough hydrogel layer of the module adheres to the bio-based polyurethane substrate.After 1,000 sliding cycles with a 1 N load,the improved PDMS’s Coefficient of Friction(COF)remains steady and low(COF<0.81).We recommend using the suggested structure and a standard set of optimal variables to enhance the functional efficiency of such systems.In conclusion,we have demonstrated the optimal simulation of these parameters for stimulus-responsive,adjustable surface systems. 展开更多
关键词 Biomimetic surface STIMULI-RESPONSIVE friction anisotropy 3D printing coefficient of friction
在线阅读 下载PDF
Microstructures and mechanical properties of electroplated Cu-Bi coatings 被引量:1
10
作者 魏晓金 陈为为 +2 位作者 王宇鑫 郑思琳 高唯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2939-2944,共6页
Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatin... Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatings were also studied. It was found that the deposition parameters have significant effect on the mechanical properties of the Cu-Bi coatings. The microhardness has been improved from HVso165 of Cu coating to HVs0 250 of Cu-Bi composite coating prepared at 50 mA/cm2 for 20 min. Correspondingly, wear resistance of the Cu-Bi composite coating has also been enhanced significantly. 展开更多
关键词 Cu-Bi coating composite coating MICROHARDNESS coefficient of friction ELECTROPLATING
在线阅读 下载PDF
Tribological behavior of self lubricating Cu/MoS_2 composites fabricated by powder metallurgy 被引量:16
11
作者 Mohammad MOAZAMI-GOUDARZI Aram NEMATI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期946-956,共11页
The effects of MoS2 content on microstructure, density, hardness and wear resistance of pure copper were studied. Copper-based composites containing 0-10%(mass fraction) MoS2 particles were fabricated by mechanical ... The effects of MoS2 content on microstructure, density, hardness and wear resistance of pure copper were studied. Copper-based composites containing 0-10%(mass fraction) MoS2 particles were fabricated by mechanical milling and hot pressing from pure copper and MoS2 powders. Wear resistance was evaluated in dry sliding condition using a pin on disk configuration at a constant sliding speed of 0.2 m/s. Hardness measurements showed a critical MoS2 content of 2.5% at which a hardness peak was attained. Regardless of the applied normal load, the lowest coefficient of friction and wear loss were attained for Cu/2.5 MoS2 composite. While coefficient of friction decreased when the applied normal load was raised from 1 to 4 N at any reinforcement content, the wear volume increased with increasing normal load. SEM micrographs from the worn surfaces and debris revealed that the wear mechanism was changed from mainly adhesion in pure copper to a combination of abrasion and delamination in Cu/MoS2 composites. 展开更多
关键词 copper matrix composite microstxucture coefficient of friction wear mechanism
在线阅读 下载PDF
Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet 被引量:9
12
作者 Wang Dan Li Heng +2 位作者 Yang He Ma Jun Li Guangjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第4期1002-1009,共8页
The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 t... The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods(chromium plating, TiAlN coating, surface polishing and nitriding treatment)were applied to the H13 surfaces. Taking the coefficient of friction(CoF) and the wear degree as evaluation indicators, the high-temperature tribological behavior of the surface modified H13 steel was experimentally investigated under different tribological conditions. The results of this study indicate that the tribological properties of the TiAlN coating under dry friction condition are better than the others for a wide range of temperature(from room temperature to 500 C), while there is little difference of tribological properties between different surface modifications under graphite lubricated condition, and the variation law of CoF with temperature under graphite lubricated is opposite to that under the dry friction. 展开更多
关键词 coefficient of friction H13 Surface modification TI-6AL-4V Tools Warm forming WEAR
原文传递
Dry sliding wear behavior of an extruded Mg-Dy-Zn alloy with long period stacking ordered phase 被引量:6
13
作者 Guangli Bi Yuandong Li +3 位作者 Xiaofeng Huang Tijun Chen Ying Ma Yuan Hao 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期63-69,共7页
The dry sliding wear behavior of extruded Mg-2Dy-0.5Zn alloy(at.%)was investigated using a pin-on-disk configuration.The friction coefficient and wear rate were measured within a load range 20-760 N at a sliding veloc... The dry sliding wear behavior of extruded Mg-2Dy-0.5Zn alloy(at.%)was investigated using a pin-on-disk configuration.The friction coefficient and wear rate were measured within a load range 20-760 N at a sliding velocity of 0.785 m/s.Microstructure and wear surface of alloy were examined using scanning electron microscopy.The mechanical properties of alloy were tested at room and elevated temperatures.Five wear mechanisms,namely abrasion,oxidation,delamination,thermal softening and melting dominated the whole wear behavior with increasing applied load.The extruded Mg-2Dy-0.5Zn alloy exhibited the better wear resistance as compared with as-cast Mg_(97)Zn_(1)Y_(2) alloy under the given conditions through contact surface temperature analysis.The improved wear resistance was mainly related to fine grain size,good thermal stability of long period stacking order(LPSO)phase and excellent higher-temperature mechanical properties. 展开更多
关键词 Mg-Dy-Zn alloy coefficient of friction Wear rate Wear mechanism
在线阅读 下载PDF
Investigation of dry sliding wear properties of multi-directional forged Mg-Zn alloys 被引量:6
14
作者 S.Ramesh Gajanan Anne +2 位作者 H.Shivananda Nayaka Sandeep Sahu M.R.Ramesh 《Journal of Magnesium and Alloys》 SCIE 2019年第3期444-455,共12页
Effect of multi-directional forging(MDF)on wear properties of Mg-Zn alloys(with 2,4,and 6wt%Zn)is investigated.Dry sliding wear test was performed using pin on disk machine on MDF processed and homogenized samples.Wea... Effect of multi-directional forging(MDF)on wear properties of Mg-Zn alloys(with 2,4,and 6wt%Zn)is investigated.Dry sliding wear test was performed using pin on disk machine on MDF processed and homogenized samples.Wear behavior of samples was analyzed at loads of ION and 20 N,with sliding distances of 2000m and 4000m,at a sliding velocity of 3m/s.Microstructures of worn samples were observed under scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and x-ray diffraction(XRD)and the results were analyzed.Mechanical properties were evaluated using microhardness test.After 5 passes of MDF,the average grain size was found to be 30±4p m,22±3 pm,and 18±3 pm,in Mg-2%Zn,Mg-4%Zn,and Mg-6%Zn alloys,respectively,with significant improvement in hardness in all cases.Wear resistance was improved after MDF processing,as well as,with increment in Zn content in Mg alloy.However,it decreased when the load and the sliding distance increased.Worn surface exhibited ploughing,delamination,plastic deformation,and wear debris along sliding direction,and abrasive wear was found to be the main mechanism. 展开更多
关键词 Multi-directional forging Mg-Zn alloy MICROHARDNESS WEAR coefficient of friction
在线阅读 下载PDF
Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG 被引量:4
15
作者 Tianyi Zhang Junsheng Wu +7 位作者 Lei Jin Zhan Zhang Wan Rong Bowei Zhang Yi Wang Yedong He Wei Liu Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2630-2637,共8页
A cathodic plasma electrolytic nitriding(CPEN)treatment with a urea aqueous solution was performed on 316L stainless steel to rapidly improve its surface properties in this work.Test results show that the PEG2000 macr... A cathodic plasma electrolytic nitriding(CPEN)treatment with a urea aqueous solution was performed on 316L stainless steel to rapidly improve its surface properties in this work.Test results show that the PEG2000 macromolecules increased the nitriding energy via enhancing the ability to bond the produced gas film to the metal/electrolyte interface.The cross-sectional morphologies indicate that a thick nitrided layer was obtained when the urea concentration was 543 g I^-1,corresponding to a Vickers hardness 450 HV(0.1),which was 3.5 times larger than that of the substrate.The nitrided layer mainly contained expanded austenite(γN),oxides and iron nitrides(e.g.,Fe3O4 and FeN(0.076)).In terms of its performance,coefficient of friction(COF)of the nitride layer decreased to nearly two-thirds that of the untreated layer,and the passivation current densities of the nitrided sample in a 3.5%NaCl solution decreased by an order of magnitude compared to that of the substrate.Therefore,the approach presented herein provides an attractive way to modify the effect of CPEN in a urea aqueous solution. 展开更多
关键词 316L stainless steel Cathodic plasma electrolytic nitriding coefficient of friction Polarization curves
原文传递
Comparative study on pullout behaviour of pressure grouted soil nails from field and laboratory tests 被引量:3
16
作者 HONG Cheng-yu YIN Jian-hua PEI Hua-fu 《Journal of Central South University》 SCIE EI CAS 2013年第8期2285-2292,共8页
Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not... Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not well investigated. In this work, a number of field pullout tests of pressure grouted soil nails were conducted to estimate the pullout resistance of soil nails. The effective bond lengths of field soil nails were accurately controlled by a new grouting packer system. Typical field test results and the related comparison with typical laboratory test results reveal that the apparent coefficient of friction (ACF) decreases with the increase of overburden soil pressure when grouting pressure is constant, but increases almost linearly with the increase of grouting pressure when overburden pressure (soil depth) is unchanged. Water contents of soil samples at soil nail surfaces show obvious reductions compared with the results of soil samples from drillholes. After soil nails were completely pulled out of the ground, surface conditions of the soil nails and surrounding soil were examined. It is found that the water content values of the soil at the soil/nail interfaces decrease substantially compared with those of soil samples extracted from drillholes. In addition, all soil nails expand significantly in the diametrical direction after being pulled out of ground, indicating that the pressurized cement grout compacts the soil and penetrates into soil voids, leading to a corresponding shift of failure surface into surrounding soil mass significantly. 展开更多
关键词 soil nail apparent coefficient of friction overburden soil pressure grouting pressure
在线阅读 下载PDF
Influence of sulfides on the tribological properties of composites produced by pulse electric current sintering 被引量:2
17
作者 Seung Ho Kim 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第1期95-103,共9页
Self-lubricating A1203-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WSz) serving as solid lubricants, were fabricated by using the pulse electric current sinteri... Self-lubricating A1203-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WSz) serving as solid lubricants, were fabricated by using the pulse electric current sintering (PECS) technique. The coefficient of friction (COF) of the A1203-15wt% ZrO2 composite without/with sulfides was in the range of 0.37-0.48 and 0.27-0.49, respectively. As the amoant of sul- fides increased, the COF and the wear rate decreased. The reduction in COF and wear rate of the sulfide-containing composite is caused by a reduction in shear stresses between the specimen and the tribological medium due to the formation of a lubricating film resulting from the lamellar structure of sulfides located on the worn surface. 展开更多
关键词 ceramic composites coefficient of friction solid lubricants sulfides wear of materials
在线阅读 下载PDF
Dry sliding wear behavior of extruded Mg-Sn-Yb alloy 被引量:2
18
作者 姜静 毕广利 +3 位作者 赵磊 李荣广 连建设 江中浩 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第1期77-85,共9页
The dry sliding wear behavior of extruded Mg-9Sn and Mg-9Sn-3Yb alloys through pin-on-disc configuration was investigated at room temperature. Coefficient of friction, wear rate and wear resistance of extruded Mg-9Sn ... The dry sliding wear behavior of extruded Mg-9Sn and Mg-9Sn-3Yb alloys through pin-on-disc configuration was investigated at room temperature. Coefficient of friction, wear rate and wear resistance of extruded Mg-9Sn and Mg-9Sn-3Yb alloys were measured within a load range of 20-240 N and 20-380 N at a sliding velocity of 0.785 m/s, respectively. The wear tracks, worn surface and wear edge were observed using a scanning electron microscope and an energy dispersive X-ray spectrometer. The results indicated that wear rate, coefficient of friction and wear resistance changed with increasing applied load due to different wear mechanisms. Six wear mechanisms, namely adhesion, abrasion, oxidation, delamination, thermal softening and melting, were observed for both extruded alloys. The extruded Mg-9Sn-3Yb alloy exhibited good wear resistance compared with extruded Mg-9Sn alloy, which was mainly attributed to a large number of volume fraction of Mg2 Sn particles, the formation of thermal stable Mg2(Sn,Yb) particles and good elevated temperature mechanical properties. 展开更多
关键词 Mg-Sn-Yb alloy coefficient of friction wear resistance wear mechanism rare earths
原文传递
Enhancement of wear resistance of Ti–6Al–4V alloy by picosecond laser surface micro texturing process 被引量:2
19
作者 DINESH BABU P VIGNESH S +1 位作者 VIGNESH M BALAMURUGAN C 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1836-1848,共13页
A pulsed,picosecond Nd:YAG laser with a wavelength of 532 nm is used to texture the surface of grade 5 titanium alloy(Ti–6Al–4V)for minimizing its wear rate.The wear properties of the base samples and laser surface ... A pulsed,picosecond Nd:YAG laser with a wavelength of 532 nm is used to texture the surface of grade 5 titanium alloy(Ti–6Al–4V)for minimizing its wear rate.The wear properties of the base samples and laser surface textured samples are analyzed by conducting wear tests under a sliding condition using pin-on-disk equipment.The wear tests are conducted based on the Box–Benhken design,and the interaction of the process parameters is analyzed using response surface methodology.The wear analysis is conducted by varying the load,rotating speed of the disc,and track diameter at room temperature with a sliding distance of 1500 m.The results demonstrate that the laser textured surfaces exhibited a lower coefficient of friction and good anti-wear properties as compared with the non-textured surfaces.A regression model is developed for the wear analysis of titanium alloy using the analysis of variance technique.It is also observed from the analysis that the applied load and sliding distance are the parameters that have the greatest effect on the wear behavior followed by the wear track diameter.The optimum operating conditions have been suggested based on the results obtained from the numerical optimization approach. 展开更多
关键词 titanium alloy surface texturing Box–Benhken design WEAR coefficient of friction optimization
在线阅读 下载PDF
Improving tribological and thermal properties of Al alloy using CNTs and Nb nanopowder via SPS for power transmission conductor 被引量:2
20
作者 Chika O.UJAH Patricia POPOOLA +2 位作者 Olawale POPOOLA Victor AIGBODION Philip OLADIJO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期333-343,共11页
This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,... This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,30 MPa,10 min,and 200℃/min.The tribology test was run with ball-on-disc tribometer using steel ball as the counter body.And the thermal test was processed with thermogravimetric analyzer(TGA)and laser flash apparatus(LFA).Results showed that the addition of 8 wt.%CNTs and 8 wt.%Nb reinforcements respectively decreased the coefficient of friction(COF)of the composite by 79%.The wear volume of the composite was decreased by 23%,and so was the wear rate.However,the thermal conductivity of the composite was equally improved by 44%.The tribology improvement was stimulated by a C film generated by CNTs and a protective Nb2O5 formed by Nb nanopowder.The thermal conductivity was improved by the grain refining property of Nb and the high thermal conductivity of CNTs.Therefore,these results indicated that Al-CNTs-Nb composite is a robust material for high transmission conductor capable of reducing sag and ensuring the durability of the composite. 展开更多
关键词 TRIBOLOGY thermal conductivity spark plasma sintering Al-CNTs-Nb composite coefficient of friction
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部