The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom...The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.展开更多
BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral...BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral cerebral edema,but cannot realize quantification.When patients have symptoms of diffuse cerebral edema or high cranial pressure,CT or MRI often suggests that cerebral edema is lagging and cannot be dynamically monitored in real time.Intracranial pressure monitoring is the gold standard,but it is an invasive operation with high cost and complications.For clinical purposes,the ideal cerebral edema monitoring should be non-invasive,real-time,bedside,and continuous dynamic monitoring.The dis-turbance coefficient(DC)was used in this study to dynamically monitor the occu-rrence,development,and evolution of cerebral edema in patients with cerebral hemorrhage in real time,and review head CT or MRI to evaluate the development of the disease and guide further treatment,so as to improve the prognosis of patients with cerebral hemorrhage.AIM To offer a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.METHODS A total of 160 patients with hypertensive cerebral hemorrhage admitted to the Department of Neurosurgery,Second Affiliated Hospital of Xi’an Medical University from September 2018 to September 2019 were recruited.The patients were randomly divided into a control group(n=80)and an experimental group(n=80).Patients in the control group received conventional empirical treatment,while those in the experimental group were treated with mannitol dehydration under the guidance of DC.Subsequently,we compared the two groups with regards to the total dosage of mannitol,the total course of treatment,the incidence of complications,and prognosis.RESULTS The mean daily consumption of mannitol,the total course of treatment,and the mean hospitalization days were 362.7±117.7 mL,14.8±5.2 days,and 29.4±7.9 in the control group and 283.1±93.6 mL,11.8±4.2 days,and 23.9±8.3 in the experimental group(P<0.05).In the control group,there were 20 patients with pulmonary infection(25%),30 with electrolyte disturbance(37.5%),20 with renal impairment(25%),and 16 with stress ulcer(20%).In the experimental group,pulmonary infection occurred in 18 patients(22.5%),electrolyte disturbance in 6(7.5%),renal impairment in 2(2.5%),and stress ulcers in 15(18.8%)(P<0.05).According to the Glasgow coma scale score 6 months after discharge,the prognosis of the control group was good in 20 patients(25%),fair in 26(32.5%),and poor in 34(42.5%);the prognosis of the experimental group was good in 32(40%),fair in 36(45%),and poor in 12(15%)(P<0.05).CONCLUSION Using DC for non-invasive dynamic monitoring of cerebral edema demonstrates considerable clinical potential.It reduces mannitol dosage,treatment duration,complication rates,and hospital stays,ultimately lowering hospital-ization costs.Additionally,it improves overall patient prognosis,offering a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.展开更多
As the first gold mine discovered at the sea in China and the only coastal gold mine currently mined there,Sanshandao Gold Mine faces unique challenges.The mine's safety is under continual threat from its faulted ...As the first gold mine discovered at the sea in China and the only coastal gold mine currently mined there,Sanshandao Gold Mine faces unique challenges.The mine's safety is under continual threat from its faulted structure coupled with the overlying water.As the mining proceeds deeper,the risk of water inrush increases.The mine's maximum water yield reaches 15000 m3/day,which is attributable to water channels present in fault zones.Predominantly composed of soil–rock mixtures(SRM),these fault zones'seepage characteristics significantly impact water inrush risk.Consequently,investigating the seepage characteristics of SRM is of paramount importance.However,the existing literature mostly concentrates on a single stress state.Therefore,this study examined the characteristics of the permeability coefficient under three distinct stress states:osmotic,osmotic–uniaxial,and osmotic–triaxial pressure.The SRM samples utilized in this study were extracted from in situ fault zones and then reshaped in the laboratory.In addition,the micromechanical properties of the SRM samples were analyzed using computed tomography scanning.The findings reveal that the permeability coefficient is the highest under osmotic pressure and lowest under osmotic–triaxial pressure.The sensitivity coefficient shows a higher value when the rock block percentage ranges between 30%and 40%,but it falls below 1.0 when this percentage exceeds 50%under no confining pressure.Notably,rock block percentages of 40%and 60%represent the two peak points of the sensitivity coefficient under osmotic–triaxial pressure.However,SRM samples with a 40%rock block percentage consistently show the lowest permeability coefficient under all stress states.This study establishes that a power function can model the relationship between the permeability coefficient and osmotic pressure,while its relationship with axial pressure can be described using an exponential function.These insights are invaluable for developing water inrush prevention and control strategies in mining environments.展开更多
Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter us...Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency.展开更多
BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free r...BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes.展开更多
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC...Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)at...Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings.展开更多
The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of...The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.展开更多
Extracorporeal shock wave lithotripsy(ESWL)is recognised as the ideal noninvasive procedure for urolithiasis.However,the suitability of ESWL varies depending on the composition of the stone.The chemical structure of t...Extracorporeal shock wave lithotripsy(ESWL)is recognised as the ideal noninvasive procedure for urolithiasis.However,the suitability of ESWL varies depending on the composition of the stone.The chemical structure of the stone may not be uniform throughout the stone and this heterogeneity provides the clue in the form of variation coefficient of stone density.To be aware of the success of the stone breakage by ESWL is an advantage upfront,so that it is possible to apply the technology to the most appropriate patient.This is an important aspect in the successful management of urolithiasis.展开更多
Wind tunnel experiment and CFD(computational fluid dynamics)simulation with LES(large eddy simulation)have been conducted to investigate the characteristics of peak wind force coefficients of porous panels mounted on ...Wind tunnel experiment and CFD(computational fluid dynamics)simulation with LES(large eddy simulation)have been conducted to investigate the characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings.First,aerodynamic modelling of porous panels was discussed.The relation between pressure loss coefficient and porosity was obtained.Then,a wind tunnel experiment was conducted to measure the wind forces(net wind pressures)acting on solid and porous panels mounted on the roof of a high-rise building.Because it was difficult to measure the pressures on both sides of thin,porous panel at the same location simultaneously,we proposed to use the roof edge pressures near the panel for the panel’s inside-surface pressures.This experimental method was validated by a CFD simulation reproducing the wind tunnel experiment.The characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings were made clear.Finally,positive and negative peak wind force coefficients for designing the rooftop porous panels were proposed.展开更多
We evaluate some series with summands involving a single binomial coefficient(^6k 3k).For example,we prove that■Motivated by Galois theory,we introduce the so-called Duality Principle for irrational series of Ramanu...We evaluate some series with summands involving a single binomial coefficient(^6k 3k).For example,we prove that■Motivated by Galois theory,we introduce the so-called Duality Principle for irrational series of Ramanujan’s type or Zeilberger’s type,and apply it to find 26 new irrational series identities.For example,we conjecture that■where ■for any integer d≡0,1 (mod 4) with (d/k) the Kronecker symbol.展开更多
In thermoelectricity,the inherent coupling between electrical conductivity and Seebeck coefficient represents a fundamental challenge in thermoelectric materials development.Herein,we present a unique pressure-tuning ...In thermoelectricity,the inherent coupling between electrical conductivity and Seebeck coefficient represents a fundamental challenge in thermoelectric materials development.Herein,we present a unique pressure-tuning strategy using compressible layered 2H-MoTe2,achieving an effective decoupling between the electrical conductivity and Seebeck coefficient.The applied pressure simultaneously induces two complementary effects:(1)bandgap reduction that moderately enhances carrier concentration to improve the electrical conductivity,and(2)band convergence that dramatically increases density-of-states effective mass to boost the Seebeck coefficient.This dual mechanism yields an extraordinary 18.5-fold enhancement in the average power factor.First-principles calculations and Boltzmann transport modeling precisely reproduce the experimental observations,validating this pressure-induced decoupling mechanism.The pressure-tuning mechanism provides a feasible and effective strategy for breaking through the optimization limits of the power factor,facilitating the design of high-performance thermoelectric materials.展开更多
In photolithography,shortening the exposure wavelength from ultraviolet to extreme ultraviolet(EUV,13.5 nm)and soft X-ray region in terms of beyond EUV(BEUV,6.X nm)and water window X-ray(WWX,2.2–4.4 nm)is expected to...In photolithography,shortening the exposure wavelength from ultraviolet to extreme ultraviolet(EUV,13.5 nm)and soft X-ray region in terms of beyond EUV(BEUV,6.X nm)and water window X-ray(WWX,2.2–4.4 nm)is expected to further miniaturize the technology node down to sub-5 nm level.However,the absorption ability of molecules in these ranges,especially WWX region,is unknown,which should be very important for the utilization of energy.Herein,the molar absorption cross sections of different elements at 2.4 nm of WWX were firstly calculated and compared with the wavelengths of 13.5 nm and 6.7 nm.Based on the absorption cross sections in these ranges and density estimation results from the density-functional theory calculation,the linear absorption coefficients of typical resist materials,including metal-oxy clusters,organic small molecules,polymers,and photoacid generators(PAGs),are evaluated.The analysis suggests that the Zn cluster has higher absorption in BEUV,whereas the Sn cluster has higher absorption in WWX.Doping PAGs with high EUV absorption atoms improves chemically amplified photoresist(CAR)polymer absorption performance.However,for WWX,it is necessary to introduce an absorption layer containing high WWX absorption elements such as Zr,Sn,and Hf to increase the WWX absorption.展开更多
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ...The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.展开更多
Demand for high-performance power devices continues to grow with the continuous development of power electronics and high-end field applications.Although packaging materials based on epoxy resins and silica gels have ...Demand for high-performance power devices continues to grow with the continuous development of power electronics and high-end field applications.Although packaging materials based on epoxy resins and silica gels have been widely developed,higher operating temperatures and operating voltages are still critical to the performance of power devices.Here,a composite film containing functionalized meso-porous hollow silica particles(MH-SiO_(2))and polyimide(PI)was prepared by a template method and layer-by-layer coating strategy to address the current bottlenecks in packaging material development.The electrical breakdown strength of the prepared PI/SiO_(2) composite film was 323.41 kV/mm,while the mass fraction of MH-SiO_(2) was only 5%.This indicates that the mesoporous structure can effectively inhibit electron collisions with nano-restricted domains.The simulation results also indicate that the size variation of inorganic fillers and the interaction of organic/inorganic heterogeneous interfaces are the main reasons affecting the performance of the composites.Meanwhile,the PI/SiO_(2) composite films achieved other properties required for practical applications,such as matched coefficient of thermal ex-pansion(CTE)(23.5 ppm/℃),excellent thermal stability(T_(5)%=559.0℃)and low dielectric constant(2.27@1 M Hz).These results highlight the great potential of inorganic phase-specific structural designs for the preparation of high-performance power device packaging materials.展开更多
The heat transfer coefficient of the water surface is an important parameter in the design of thermal discharge in nuclear power plant engineering.In this study,in situ observations were performed in the northwestern ...The heat transfer coefficient of the water surface is an important parameter in the design of thermal discharge in nuclear power plant engineering.In this study,in situ observations were performed in the northwestern South China Sea near a coastal nuclear power plant to evaluate the applicability of heat transfer coefficient calculation algorithms commonly used in marine thermal discharge engineering in China.The results show that the Regulation for Hydraulic and Thermal Model in Cooling Water Projects(SL 160-2012)is not applicable in calculating the heat transfer coefficient in offshore areas.SL 160-2012 significantly overestimates the heat loss at the sea surface.However,Code for Design of Cooling for Industrial Recirculating Water(GB/T 50102-2014)performs well,and its estimation coefficient is roughly consistent with the estimations of the COARE 3.6 bulk algorithm,which is extensively used in physical oceanography for calculating air-sea heat fluxes,and the Gunneberg formula.In a 3-day observation,the average heat transfer coefficients estimated using these three algorithms were 50.4,48.5,and 48.8 W m^(-2)℃^(-1),respectively,with a deviation of less than 4% among them,whereas that estimated using SL 160-2012 was as high as 176.3 W m^(-2)℃^(-1).The abnormally large value of SL 160-2012 is due to its additional cooling term,which is artificially increased by 100 times because of the incorrect unit conversion used when developing the regulation.If this error is corrected,the value will decrease to 50.5 W m^(-2)℃^(-1),which is very close to the estimation of GB/T 50102-2014.展开更多
In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension ...In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m.展开更多
The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engin...The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engineering projects.During the collection process of JRC samples,the redundancy or insufficiency of representative rock joint surface topography(RJST) information in serial length JRC samples is the essential reason that affects the reliability of the scale effect results.Therefore,this paper proposes an adaptive sampling method,in which we use the entropy consistency measure Q(a) to evaluate the consistency of the joint morphology information contained in adjacent JRC samples.Then the sampling interval is automatically adjusted according to the threshold Q(at) of the entropy consistency measure to ensure that the degree of change of RJST information between JRC samples is the same,and ultimately makes the representative RJST information in the collected JRC samples more balanced.The application results of actual cases show that the proposed method can obtain the scale effect in the JRC efficiently and reliably.展开更多
The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in w...The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in which the experimental results obtained from our previous studies(2019,2025)are used.Focus is on the distributions of the peak wind force coefficients along the centerline parallel to the wind direction considering that domed free roof is an axisymmetric body.Empirical formulas are provided to the distributions of mean wind force coefficient,RMS(root mean square)fluctuating wind force coefficient and peak factors as a function of the rise/span ratio of the roof and the turbulence intensity of the approach flow in the along-wind direction at the mean roof height.The proposed methods are validated by the experimental results for the peak wind force coefficients.The methods would provide useful information to structural engineers when estimating the design wind loads on cladding/components of domed free roofs.展开更多
基金support for this work by Key Research and Development Project of Henan Province(Grant.No.241111232300)the National Natural Science Foundation of China(Grant.No.52273085 and 52303113)the Open Fund of Yaoshan Laboratory(Grant.No.2024003).
文摘The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.
基金Supported by the Shaanxi Provincial Key Research and Development Plan Project,No.2020ZDLSF01-02.
文摘BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral cerebral edema,but cannot realize quantification.When patients have symptoms of diffuse cerebral edema or high cranial pressure,CT or MRI often suggests that cerebral edema is lagging and cannot be dynamically monitored in real time.Intracranial pressure monitoring is the gold standard,but it is an invasive operation with high cost and complications.For clinical purposes,the ideal cerebral edema monitoring should be non-invasive,real-time,bedside,and continuous dynamic monitoring.The dis-turbance coefficient(DC)was used in this study to dynamically monitor the occu-rrence,development,and evolution of cerebral edema in patients with cerebral hemorrhage in real time,and review head CT or MRI to evaluate the development of the disease and guide further treatment,so as to improve the prognosis of patients with cerebral hemorrhage.AIM To offer a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.METHODS A total of 160 patients with hypertensive cerebral hemorrhage admitted to the Department of Neurosurgery,Second Affiliated Hospital of Xi’an Medical University from September 2018 to September 2019 were recruited.The patients were randomly divided into a control group(n=80)and an experimental group(n=80).Patients in the control group received conventional empirical treatment,while those in the experimental group were treated with mannitol dehydration under the guidance of DC.Subsequently,we compared the two groups with regards to the total dosage of mannitol,the total course of treatment,the incidence of complications,and prognosis.RESULTS The mean daily consumption of mannitol,the total course of treatment,and the mean hospitalization days were 362.7±117.7 mL,14.8±5.2 days,and 29.4±7.9 in the control group and 283.1±93.6 mL,11.8±4.2 days,and 23.9±8.3 in the experimental group(P<0.05).In the control group,there were 20 patients with pulmonary infection(25%),30 with electrolyte disturbance(37.5%),20 with renal impairment(25%),and 16 with stress ulcer(20%).In the experimental group,pulmonary infection occurred in 18 patients(22.5%),electrolyte disturbance in 6(7.5%),renal impairment in 2(2.5%),and stress ulcers in 15(18.8%)(P<0.05).According to the Glasgow coma scale score 6 months after discharge,the prognosis of the control group was good in 20 patients(25%),fair in 26(32.5%),and poor in 34(42.5%);the prognosis of the experimental group was good in 32(40%),fair in 36(45%),and poor in 12(15%)(P<0.05).CONCLUSION Using DC for non-invasive dynamic monitoring of cerebral edema demonstrates considerable clinical potential.It reduces mannitol dosage,treatment duration,complication rates,and hospital stays,ultimately lowering hospital-ization costs.Additionally,it improves overall patient prognosis,offering a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.
基金State Key Research Development Program of China,Grant/Award Number:2021YFC3001301。
文摘As the first gold mine discovered at the sea in China and the only coastal gold mine currently mined there,Sanshandao Gold Mine faces unique challenges.The mine's safety is under continual threat from its faulted structure coupled with the overlying water.As the mining proceeds deeper,the risk of water inrush increases.The mine's maximum water yield reaches 15000 m3/day,which is attributable to water channels present in fault zones.Predominantly composed of soil–rock mixtures(SRM),these fault zones'seepage characteristics significantly impact water inrush risk.Consequently,investigating the seepage characteristics of SRM is of paramount importance.However,the existing literature mostly concentrates on a single stress state.Therefore,this study examined the characteristics of the permeability coefficient under three distinct stress states:osmotic,osmotic–uniaxial,and osmotic–triaxial pressure.The SRM samples utilized in this study were extracted from in situ fault zones and then reshaped in the laboratory.In addition,the micromechanical properties of the SRM samples were analyzed using computed tomography scanning.The findings reveal that the permeability coefficient is the highest under osmotic pressure and lowest under osmotic–triaxial pressure.The sensitivity coefficient shows a higher value when the rock block percentage ranges between 30%and 40%,but it falls below 1.0 when this percentage exceeds 50%under no confining pressure.Notably,rock block percentages of 40%and 60%represent the two peak points of the sensitivity coefficient under osmotic–triaxial pressure.However,SRM samples with a 40%rock block percentage consistently show the lowest permeability coefficient under all stress states.This study establishes that a power function can model the relationship between the permeability coefficient and osmotic pressure,while its relationship with axial pressure can be described using an exponential function.These insights are invaluable for developing water inrush prevention and control strategies in mining environments.
基金supported in part by the National Natural Science Foundation of China(61873348,6230 3266,62273200)JSPS(Japan Society for the Promotion of Science) KAKENHI(22H03998,23K25252)
文摘Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency.
文摘BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes.
基金funding from the National Natural Science Foundation of China (Grant No.42277175)the pilot project of cooperation between the Ministry of Natural Resources and Hunan Province“Research and demonstration of key technologies for comprehensive remote sensing identification of geological hazards in typical regions of Hunan Province” (Grant No.2023ZRBSHZ056)the National Key Research and Development Program of China-2023 Key Special Project (Grant No.2023YFC2907400).
文摘Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
文摘Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings.
文摘The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.
文摘Extracorporeal shock wave lithotripsy(ESWL)is recognised as the ideal noninvasive procedure for urolithiasis.However,the suitability of ESWL varies depending on the composition of the stone.The chemical structure of the stone may not be uniform throughout the stone and this heterogeneity provides the clue in the form of variation coefficient of stone density.To be aware of the success of the stone breakage by ESWL is an advantage upfront,so that it is possible to apply the technology to the most appropriate patient.This is an important aspect in the successful management of urolithiasis.
文摘Wind tunnel experiment and CFD(computational fluid dynamics)simulation with LES(large eddy simulation)have been conducted to investigate the characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings.First,aerodynamic modelling of porous panels was discussed.The relation between pressure loss coefficient and porosity was obtained.Then,a wind tunnel experiment was conducted to measure the wind forces(net wind pressures)acting on solid and porous panels mounted on the roof of a high-rise building.Because it was difficult to measure the pressures on both sides of thin,porous panel at the same location simultaneously,we proposed to use the roof edge pressures near the panel for the panel’s inside-surface pressures.This experimental method was validated by a CFD simulation reproducing the wind tunnel experiment.The characteristics of peak wind force coefficients of porous panels mounted on the roofs of high-rise buildings were made clear.Finally,positive and negative peak wind force coefficients for designing the rooftop porous panels were proposed.
基金Supported by the National Natural Science Foundation of China(Grant No.12371004)。
文摘We evaluate some series with summands involving a single binomial coefficient(^6k 3k).For example,we prove that■Motivated by Galois theory,we introduce the so-called Duality Principle for irrational series of Ramanujan’s type or Zeilberger’s type,and apply it to find 26 new irrational series identities.For example,we conjecture that■where ■for any integer d≡0,1 (mod 4) with (d/k) the Kronecker symbol.
基金supported by the Science and Technology Development Project of Jilin Province(Grant No.SKL202402004)the Program for the Development of Science and Technology of Jilin Province(Grant No.YDZJ202201ZYTS308)+1 种基金the Open Research Fund of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,Jilin University(Grant Nos.202216 and 2022-23)the National Natural Science Foundation of China(Grant No.12350410372)。
文摘In thermoelectricity,the inherent coupling between electrical conductivity and Seebeck coefficient represents a fundamental challenge in thermoelectric materials development.Herein,we present a unique pressure-tuning strategy using compressible layered 2H-MoTe2,achieving an effective decoupling between the electrical conductivity and Seebeck coefficient.The applied pressure simultaneously induces two complementary effects:(1)bandgap reduction that moderately enhances carrier concentration to improve the electrical conductivity,and(2)band convergence that dramatically increases density-of-states effective mass to boost the Seebeck coefficient.This dual mechanism yields an extraordinary 18.5-fold enhancement in the average power factor.First-principles calculations and Boltzmann transport modeling precisely reproduce the experimental observations,validating this pressure-induced decoupling mechanism.The pressure-tuning mechanism provides a feasible and effective strategy for breaking through the optimization limits of the power factor,facilitating the design of high-performance thermoelectric materials.
基金supported by the National Natural Science Foundation of China(22090011,22378052)the Fundamental Research Funds for China Central Universities(DUT22LAB608 and DUT20RC(3)030)+1 种基金Liaoning Binhai Laboratory(LBLB-2023-03)Key R&D Program of Shandong Province(2021CXGC010308).
文摘In photolithography,shortening the exposure wavelength from ultraviolet to extreme ultraviolet(EUV,13.5 nm)and soft X-ray region in terms of beyond EUV(BEUV,6.X nm)and water window X-ray(WWX,2.2–4.4 nm)is expected to further miniaturize the technology node down to sub-5 nm level.However,the absorption ability of molecules in these ranges,especially WWX region,is unknown,which should be very important for the utilization of energy.Herein,the molar absorption cross sections of different elements at 2.4 nm of WWX were firstly calculated and compared with the wavelengths of 13.5 nm and 6.7 nm.Based on the absorption cross sections in these ranges and density estimation results from the density-functional theory calculation,the linear absorption coefficients of typical resist materials,including metal-oxy clusters,organic small molecules,polymers,and photoacid generators(PAGs),are evaluated.The analysis suggests that the Zn cluster has higher absorption in BEUV,whereas the Sn cluster has higher absorption in WWX.Doping PAGs with high EUV absorption atoms improves chemically amplified photoresist(CAR)polymer absorption performance.However,for WWX,it is necessary to introduce an absorption layer containing high WWX absorption elements such as Zr,Sn,and Hf to increase the WWX absorption.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604200)the National Natural Science Foundation of China(Grant No.12261131495)Institute of Systems Science,Beijing Wuzi University(Grant No.BWUISS21).
文摘The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.
基金supported by the National Natural Science Foundation of China(Nos.52377026 and 52301192)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2024ME046 and ZR2024QE313)the China Postdoctoral Science Foundation(No.2024M761554).
文摘Demand for high-performance power devices continues to grow with the continuous development of power electronics and high-end field applications.Although packaging materials based on epoxy resins and silica gels have been widely developed,higher operating temperatures and operating voltages are still critical to the performance of power devices.Here,a composite film containing functionalized meso-porous hollow silica particles(MH-SiO_(2))and polyimide(PI)was prepared by a template method and layer-by-layer coating strategy to address the current bottlenecks in packaging material development.The electrical breakdown strength of the prepared PI/SiO_(2) composite film was 323.41 kV/mm,while the mass fraction of MH-SiO_(2) was only 5%.This indicates that the mesoporous structure can effectively inhibit electron collisions with nano-restricted domains.The simulation results also indicate that the size variation of inorganic fillers and the interaction of organic/inorganic heterogeneous interfaces are the main reasons affecting the performance of the composites.Meanwhile,the PI/SiO_(2) composite films achieved other properties required for practical applications,such as matched coefficient of thermal ex-pansion(CTE)(23.5 ppm/℃),excellent thermal stability(T_(5)%=559.0℃)and low dielectric constant(2.27@1 M Hz).These results highlight the great potential of inorganic phase-specific structural designs for the preparation of high-performance power device packaging materials.
基金supported by the Laoshan Laboratory(No.LSKJ202201600)the National Natural Science Foundation of China(No.41821004)。
文摘The heat transfer coefficient of the water surface is an important parameter in the design of thermal discharge in nuclear power plant engineering.In this study,in situ observations were performed in the northwestern South China Sea near a coastal nuclear power plant to evaluate the applicability of heat transfer coefficient calculation algorithms commonly used in marine thermal discharge engineering in China.The results show that the Regulation for Hydraulic and Thermal Model in Cooling Water Projects(SL 160-2012)is not applicable in calculating the heat transfer coefficient in offshore areas.SL 160-2012 significantly overestimates the heat loss at the sea surface.However,Code for Design of Cooling for Industrial Recirculating Water(GB/T 50102-2014)performs well,and its estimation coefficient is roughly consistent with the estimations of the COARE 3.6 bulk algorithm,which is extensively used in physical oceanography for calculating air-sea heat fluxes,and the Gunneberg formula.In a 3-day observation,the average heat transfer coefficients estimated using these three algorithms were 50.4,48.5,and 48.8 W m^(-2)℃^(-1),respectively,with a deviation of less than 4% among them,whereas that estimated using SL 160-2012 was as high as 176.3 W m^(-2)℃^(-1).The abnormally large value of SL 160-2012 is due to its additional cooling term,which is artificially increased by 100 times because of the incorrect unit conversion used when developing the regulation.If this error is corrected,the value will decrease to 50.5 W m^(-2)℃^(-1),which is very close to the estimation of GB/T 50102-2014.
基金supported by the National Natural Science Foundation of China(42276199).
文摘In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m.
基金supported by the National Natural Science Foundation of China(No.42207175)。
文摘The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engineering projects.During the collection process of JRC samples,the redundancy or insufficiency of representative rock joint surface topography(RJST) information in serial length JRC samples is the essential reason that affects the reliability of the scale effect results.Therefore,this paper proposes an adaptive sampling method,in which we use the entropy consistency measure Q(a) to evaluate the consistency of the joint morphology information contained in adjacent JRC samples.Then the sampling interval is automatically adjusted according to the threshold Q(at) of the entropy consistency measure to ensure that the degree of change of RJST information between JRC samples is the same,and ultimately makes the representative RJST information in the collected JRC samples more balanced.The application results of actual cases show that the proposed method can obtain the scale effect in the JRC efficiently and reliably.
文摘The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in which the experimental results obtained from our previous studies(2019,2025)are used.Focus is on the distributions of the peak wind force coefficients along the centerline parallel to the wind direction considering that domed free roof is an axisymmetric body.Empirical formulas are provided to the distributions of mean wind force coefficient,RMS(root mean square)fluctuating wind force coefficient and peak factors as a function of the rise/span ratio of the roof and the turbulence intensity of the approach flow in the along-wind direction at the mean roof height.The proposed methods are validated by the experimental results for the peak wind force coefficients.The methods would provide useful information to structural engineers when estimating the design wind loads on cladding/components of domed free roofs.