期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Tunable reflective spin-decoupled encoding metasurface based on Dirac semimetals
1
作者 HAO Xiao-yu ZHENG Si-yu +6 位作者 WANG Yu LIU Yang LIU Meng ZHANG Yu-ping ZHANG Jin-juan ZHAN Yi ZHANG Hui-yun 《中国光学(中英文)》 北大核心 2025年第4期968-978,共11页
Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz ba... Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications. 展开更多
关键词 coding metasurface dirac semimetal spin decoupling circular polarization TUNABLE
在线阅读 下载PDF
Review for wireless communication technology based on digital encoding metasurfaces
2
作者 Haojie Zhan Manna Gu +10 位作者 Ying Tian Huizhen Feng Mingmin Zhu Haomiao Zhou Yongxing Jin Ying Tang Chenxia Li Bo Fang Zhi Hong Xufeng Jing Le Wang 《Opto-Electronic Advances》 2025年第7期51-106,共56页
Metasurfaces offer exceptional capabilities for controlling electromagnetic waves,enabling the realization of unique electromagnetic properties.As communication technology continues to evolve,metasurfaces present prom... Metasurfaces offer exceptional capabilities for controlling electromagnetic waves,enabling the realization of unique electromagnetic properties.As communication technology continues to evolve,metasurfaces present promising applications in wireless communications.This paper reviews the latest advancements in metasurface research within the communication sector,explores metasurface-based wireless relay technologies,and summarizes various wireless communication methods employing different types of metasurfaces across diverse modulation schemes.This paper provides a detailed discussion on the design of wireless communication systems based on coding metasurfaces to simplify transmitter architecture,as well as the development of intelligent coding metasurfaces in the communication field.It also elaborates on the application of vector vortex light fields in metasurface communication.Finally,it offers a forward-looking perspective on wireless communication systems that incorporate coded metasurfaces.This review aims to furnish researchers with a thorough understanding of the current state and future directions of coded metasurface applications in communications. 展开更多
关键词 coding metasurface RIS wireless communications signal modulation TRANSMITTER vortex light
在线阅读 下载PDF
Deep learning-enabled inverse design of polarization-selective structural color based on coding metasurface
3
作者 Haolin Yang Bo Ni +2 位作者 Junhong Guo Hua Zhou Jianhua Chang 《Chinese Physics B》 2025年第5期311-318,共8页
Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective ... Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective structural color based on coding metasurface.In this study,the long short-term memory(LSTM)neural network is presented to enable the forward and inverse mapping between coding metasurface structure and corresponding color.The results show that the method can achieve 98%accuracy for the forward prediction of color and 93%accuracy for the inverse design of the structure.Moreover,a cascaded architecture is adopted to train the inverse neural network model,which can solve the nonuniqueness problem of the polarization-selective color reverse design.This study provides a new path for the application and development of structural colors. 展开更多
关键词 deep learning inverse design coding metasurface structural color polarization-selective
原文传递
Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
4
作者 Yu Chen Wu-Hao Cao +4 位作者 Jia-Qi Li Ming-Zhe Zhang Xin-Yi Du Ding-Shan Gao Pei-Li Li 《Chinese Physics B》 2025年第4期432-440,共9页
A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering a... A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar. 展开更多
关键词 coding metasurfaces polarization-independent TERAHERTZ topology optimization
原文传递
Energy focusing of flexural waves via algorithmically optimized coding metasurface lenses
5
作者 Zi-Rui Wang Di-Chao Chen +1 位作者 Rui Hong Da-Jian Wu 《Chinese Physics B》 2025年第9期277-282,共6页
Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing... Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing.However,elastic coding lenses(ECLs)still suffer from low focusing performance,thickness comparable to wavelength,and frequency sensitivity.Here,we consider both the structural and material properties of the coding unit,thus realizing further compression of the thickness of the ECL.We chose the simplest ECL,which consists of only two encoding units.The coding unit 0 is a straight structure constructed using a carbon fiber reinforced composite material,and the coding unit 1 is a zigzag structure constructed using an aluminum material,and the thickness of the ECL constructed using them is only 1/8 of the wavelength.Based on the theoretical design,the arrangement of coding units is further optimized using genetic algorithms,which significantly improves the focusing performance of the lens at different focus and frequencies.This study provides a more effective way to control vibration and noise in advanced structures. 展开更多
关键词 coding metasurface elastic wave focusing genetic algorithm
原文传递
Angular-tunable on-chip coding metasurface enabled by phase-change material with immersion liquid
6
作者 LI Xue-Nan ZHAO Zeng-Yue +4 位作者 YU Fei-Long CHEN Jin LI Guan-Hai LI Zhi-Feng CHEN Xiao-Shuang 《红外与毫米波学报》 CSCD 北大核心 2024年第6期806-812,共7页
Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functio... Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functions based on the transition between amorphous and crystalline states.However,the inherent limitation in tunable states imposes constraints on the multiplexing channels of metadevices.Here,this paper introduces a novel approach-a multi-functional metadevice achieved through the two-level control of the encoding phasechange metaatoms.Utilizing the phase-change material Ge_(2)Sb_(2)Se_(4)Te1(GSST)and high refractive-index liquid diiodomethane(CH_(2)I_(2)),this paper showcases precise control over electromagnetic wave manipulation.The GSST state governs the tunable function,switching it ON and OFF,while the presence of liquid in the hole dictates the deflection angle when the tunable function is active.Importantly,our tunable coding metasurface exhibits robust performance across a broad wavelength spectrum.The incorporation of high refractive-index liquid extends the regulatory dimension of the metadevice,enabling dynamic switching of encoding bit levels.This two-level tunable metadevice,rooted in phase-change materials,presents a promising avenue for the dynamic control of functions. 展开更多
关键词 coding metasurface tunable control phase change material electromagnetic wave manipulation
在线阅读 下载PDF
Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces 被引量:2
7
作者 Yunping Qi Baohe Zhang +3 位作者 Jinghui Ding Ting Zhang Xiangxian Wang Zao Yi 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期336-343,共8页
Benefiting from the unprecedented superiority of coding metasurfaces at manipulating electromagnetic waves in the microwave band,in this paper,we use the Pancharatnam-Berry(PB)phase concept to propose a high-efficienc... Benefiting from the unprecedented superiority of coding metasurfaces at manipulating electromagnetic waves in the microwave band,in this paper,we use the Pancharatnam-Berry(PB)phase concept to propose a high-efficiency reflectivetype coding metasurface that can arbitrarily manipulate the scattering pattern of terahertz waves and implement many novel functionalities.By optimizing the coding sequences,we demonstrate that the designed 1-,2-,and 3-bit coding metasurfaces with specific coding sequences have the strong ability to control reflected terahertz waves.The two proposed1-bit coding metasurfaces demonstrate that the reflected terahertz beam can be redirected and arbitrarily controlled.For normally incident x-and y-polarized waves,a 10 d B radar cross-section(RCS)reduction can be achieved from 2.1 THz to5.2 THz using the designed 2-bit coding metasurface.Moreover,two kinds of orbital angular momentum(OAM)vortex beams with different moduli are generated by a coding metasurface using different coding sequences.Our research provides a new degree of freedom for the sophisticated manipulation of terahertz waves,and contributes to the development of metasurfaces towards practical applications. 展开更多
关键词 coding metasurface Pancharatnam-Berry phase multiple beams radar cross-section(RCS)reduction orbital angular momentum
原文传递
Real-time programmable coding metasurface antenna for multibeam switching and scanning
8
作者 Jia-Yu Yu Qiu-Rong Zheng +3 位作者 Bin Zhang Jie He Xiang-Ming Hu Jie Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期260-267,共8页
Novel electromagnetic wave modulation by programmable dynamic metasurface promotes the device design freedom,while multibeam antennas have sparked tremendous interest in wireless communications.A programmable coding a... Novel electromagnetic wave modulation by programmable dynamic metasurface promotes the device design freedom,while multibeam antennas have sparked tremendous interest in wireless communications.A programmable coding antenna based on active metasurface elements(AMSEs)is proposed in this study,allowing scanning and state switching of multiple beams in real time.To obtain the planar array phase distribution in quick response,the aperture field superposition and discretization procedures are investigated.Without the need for a massive algorithm or elaborate design,this electronically controlled antenna with integrated radiation and phase-shift functions can flexibly manipulate the scattering state of multiple beams under field-programmable gate array(FPGA)control.Simulation and experimental results show that the multiple directional beams dynamically generated in the metasurface upper half space have good radiation performance,with the main lobe directions closely matching the predesigned angles.This metasurface antenna has great potential for future applications in multitarget radar,satellite navigation,and reconfigurable intelligent metasurfaces. 展开更多
关键词 programmable coding metasurface multibeam modulation real-time control ANTENNA
原文传递
Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
9
作者 Xinmi Yang Changrong Liu +1 位作者 Bo Hou Xiaoyang Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期274-282,共9页
A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section(RCS)reduction band is proposed.An absorptive coding metasurface implementing this scheme is derived from tradition... A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section(RCS)reduction band is proposed.An absorptive coding metasurface implementing this scheme is derived from traditional circuit analog absorber(CAA)composed of resistive ring elements which characterize dual resonances behavior.It is constructed by replacing some of the CAA elements by another kind of resistive ring elements which is singly resonant in between the original two resonant bands and has reflection phase opposite to that of the original elements at resonance.Hence the developed metasurface achieves an improved low-RCS band over which the lower and higher sub-bands are mainly contributed by wave absorption mainly while the middle sub-band is formed by joint effect of wave absorption and antiphase cancellation mechanisms.The polarization-independent wideband RCS reduction property of the metasurface is validated by full-wave simulation results of a preliminary and an advanced design examples which employ the same element configuration but different element layout schemes as partitioned distribution and random coding.The advanced design also exhibits broadband bistatic low-RCS property and keeps a stable specular RCS reduction performance with regard to incident elevation angle up to 35◦.The advanced design is fabricated and the experimental results of the sample agrees qualitatively well with their simulated counterparts.The measured figure of merit(i.e.,low-RCS bandwidth ratio versus electrical thickness)of the sample is 40.572,which is superior to or comparable with those for most of other existing metasurface with compound RCS reduction mechanism.The proposed compound metasurface technique also features simple structure,light weight,low cost and easy fabrication compared with other techniques.This makes it promising in applications such as radar stealth and electromagnetic compatibility. 展开更多
关键词 radar cross section(RCS)reduction coding metasurface wave absorption anti-phase cancellation
原文传递
Transmissive 2-bit anisotropic coding metasurface
10
作者 Pengtao Lai Zenglin Li +9 位作者 Wei Wang Jia Qu Liangwei Wu Tingting Lv Bo Lv Zheng Zhu Yuxiang Li Chunying Guan Huifeng Ma Jinhui Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期554-560,共7页
Coding metasurfaces have attracted tremendous interests due to unique capabilities of manipulating electromagnetic wave.However,archiving transmissive coding metasurface is still challenging.Here we propose a transmis... Coding metasurfaces have attracted tremendous interests due to unique capabilities of manipulating electromagnetic wave.However,archiving transmissive coding metasurface is still challenging.Here we propose a transmissive anisotropic coding metasurface that enables the independent control of two orthogonal polarizations.The polarization beam splitter and the orbital angular momentum(OAM)generator have been studied as typical applications of the anisotropic 2-bit coding metasurface.The simulated far field patterns illustrate that the x and y polarized electromagnetic waves are deflected into two different directions,respectively.The anisotropic coding metasurface has been experimentally verified to realize an OAM beam with l=2 of right-handed polarized wave,resulting from both contributions from linear-to-circular polarization conversion and the phase profile modulation.This work is beneficial to enrich the polarization manipulation field and develop transmissive coding metasurfaces. 展开更多
关键词 transmissive coding metasurfaces polarization control orbital angular momentum
原文传递
An ultra-wideband 2-bit coding metasurface using Pancharatnam–Berry phase for radar cross-section reduction
11
作者 Bao-Qin Lin Wen-Zhun Huang +3 位作者 Lin-Tao Lv Jian-Xin Guo Yan-Wen Wang Hong-Jun Ye 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期269-275,共7页
An ultra-wideband 2-bit coding metasurface is designed for radar cross-section(RCS) reduction. The design process is presented in detail, in which a polarization conversion metasurface(PCM) is first proposed. The prop... An ultra-wideband 2-bit coding metasurface is designed for radar cross-section(RCS) reduction. The design process is presented in detail, in which a polarization conversion metasurface(PCM) is first proposed. The proposed PCM can realize ultra-wideband circular polarization(CP) maintaining reflection. Moreover, Pancharatnam–Berry(PB) phase will be generated in the co-polarized reflection coefficient by rotating the metallic patches in its unit cells. Thus, based on the PCM, the four coding elements of a 2-bit coding metasurface are constructed using PB phase, and an ultra-wideband PB 2-bit coding metasurface is proposed according to an appropriate coding sequence. The simulated and experimental results show that the coding metasurface has obvious advantages of wideband and polarization-insensitivity. Compared to a metallic plate of the same size, it can achieve more than 10 dB RCS reduction in the frequency band from 9.8 GHz to 42.6 GHz with a relative bandwidth of 125.2% under normal incidence with arbitrary polarizations. 展开更多
关键词 coding metasurface Pancharatnam–Berry phase radar cross-section(RCS)
原文传递
Pentamode-Based Coding Metasurface for Underwater Acoustic Stealth
12
作者 Li He Li Cai Xing Chen 《Journal of Applied Mathematics and Physics》 2021年第7期1829-1836,共8页
<div style="text-align:justify;"> Coding metasurface draws amounts of research interests due to its potential for achieving sophisticated functions in wave manipulation by using simple logical unit cel... <div style="text-align:justify;"> Coding metasurface draws amounts of research interests due to its potential for achieving sophisticated functions in wave manipulation by using simple logical unit cells with out-of-phase responses. In this paper, we present a novel acoustic coding metasurface structure for underwater sound scattering reduction based on pentamode metamaterials. The metasurface is composed of two types of hexagonal pentamode unit cells with phase responses of 0 and π respectively. The units are arranged in random 1-bit coding sequence to achieve low-scattering underwater acoustic stealth effect. Full-wave simulation results are in good accordance with the theoretical expectation. The optimized arrangement resulted in the distribution of scattered underwater acoustic waves and suppression of the far field scattering coefficient over a wide range of incident angles. We show that pentamode-based coding metasurface provides an efficient scheme to achieve underwater acoustic stealth by ultrathin structures. </div> 展开更多
关键词 Pentamode Metamaterials coding metasurface Structure Underwater Sound Scattering
在线阅读 下载PDF
Achiral light-controlled coding metasurfaces with multi-channel electromagnetic control
13
作者 Yuxi Li Ruichao Zhu +7 位作者 Sai Sui Yajuan Han Aixia Wang Yuxiang Jia Shaojie Wang Cunqian Feng Shaobo Qu Jiafu Wang 《Light(Advanced Manufacturing)》 2025年第1期116-125,共10页
Programmable digital coding metasurfaces(PDCMs)can manipulate electromagnetic waves with high degrees of freedom,significantly enriching metasurface designs.However,most PDCMs are limited to the control of a single po... Programmable digital coding metasurfaces(PDCMs)can manipulate electromagnetic waves with high degrees of freedom,significantly enriching metasurface designs.However,most PDCMs are limited to the control of a single polarization,which cannot meet the requirements of the high integration of intelligent components.To further improve the practicability and flexibility of metasurfaces,we propose an integrated paradigm for spin-decoupling PDCMs based on light emitting diode arrays that fully embed the photoresistor as a part of the meta-atom to independently manipulate the wavefront in different polarizations.As a proof of concept,PDCMs were simulated,fabricated,and measured to verify the feasibility and effectiveness of the proposed method.The functions of scattering and vortices are verified at different polarizations,demonstrating that the metasurface can tailor the EM functions in six channels.This study can improve the integration of intelligent control metasurfaces and lay a solid foundation for their development. 展开更多
关键词 Programmable coding metasurface Spin decoupling Photoresistor Light-controlled Multi-channel.
原文传递
Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning 被引量:6
14
作者 RuiYuan Wu Lei Bao +1 位作者 LiangWei Wu TieJun Cui 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2020年第8期14-22,共9页
Coding metasurfaces make it possible to manipulate electromagnetic(EM)waves digitally by means of several discrete particles.Hence,there have been rapid advances in this field recently.Here we propose a novel design o... Coding metasurfaces make it possible to manipulate electromagnetic(EM)waves digitally by means of several discrete particles.Hence,there have been rapid advances in this field recently.Here we propose a novel design of a broadband transmission-type coding metasurface,which is valid to both x-and y-polarized EM incidences from 8.1-12.5 GHz while satisfies the requirements of 1-bit coding without changing the polarization.Two types of multi-layer coding particles with different geometrical parameters are adopted to represent the digital states"0"and"1",which are easily promoted to terahertz and optics through modifying the size scale.To verify the ability to manipulate the EM waves,we first adopt the coding metasurface to achieve broadband beam forming by converting spherical waves to plane waves and realize high-directivity pencil beam in far field with low side lobes.We further arrange the particles according to the coding sequence 010101…to steer two symmetrical beams in different directions controlled by frequencies with the maximum range of the scanning angle of 30°-50.5°.The good agreements between the simulated and measured results validate the proposed broadband coding metasurface,indicating its huge potential in communication and radar imaging systems. 展开更多
关键词 coding metasurface BROADBAND transmission-type metasurface beam forming beam scanning
原文传递
Realizing complex beams via amplitude-phase digital coding metasurfaces and semidefinite relaxation optimization
15
作者 Junwei WU Qiong HUA +4 位作者 Hui XU Hanqing YANG Zhengxing WANG Qiang CHENG Tie Jun CUI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第12期1708-1716,共9页
Complex beams play important roles in wireless communications,radar,and satellites,and have attracted great interest in recent years.In light of this background,we present a fast and efficient approach to realize comp... Complex beams play important roles in wireless communications,radar,and satellites,and have attracted great interest in recent years.In light of this background,we present a fast and efficient approach to realize complex beams by using semidefinite relaxation(SDR)optimization and amplitude-phase digital coding metasurfaces.As the application examples of this approach,complex beam patterns with cosecant,flat-top,and double shapes are designed and verified using full-wave simulations and experimental measurements.The results show excellent main lobes and low-level side lobes and demonstrate the effectiveness of the approach.Compared with previous works,this approach can solve the complex beam-forming problem more rapidly and effectively.Therefore,the approach will be of great significance in the design of beam-forming systems in wireless applications. 展开更多
关键词 Antenna beams Amplitude-phase coding metasurface Far-field synthesis Semidefinite relaxation
原文传递
An ultra-wideband coding polarizer for beam control and RCS reduction
16
作者 Huanhuan Gao Xiaojun Huang +3 位作者 Xiongwei Ma Xiaoyan Li Linyan Guo Helin Yang 《Frontiers of physics》 SCIE CSCD 2023年第4期291-299,共9页
Pancharatnam–Berry(PB)phase metasurface,as a special class of gradient metasurfaces,has been paid much attention owing to the robust performance for phase control of circularly polarized waves.Herein,we present an el... Pancharatnam–Berry(PB)phase metasurface,as a special class of gradient metasurfaces,has been paid much attention owing to the robust performance for phase control of circularly polarized waves.Herein,we present an element-based polarizer for the first step,which enables the incident electromagnetic waves into the cross-polarized waves with the relative bandwidth of 71%,and the polarization conversion ratio exceeds 90%at 6.9–14.5 GHz.Then an eight-elements coding polarizer based on the PB phase is presented for the applications on beam control and radar cross section reduction.The simulated values indicate that the reduction of radar cross section is more than 10 dB at 6–16 GHz.Our work reveals the availability of manipulating the waves,beamforming in communication systems and electromagnetic stealth,and so on. 展开更多
关键词 POLARIZER Pancharatnam-Berry phase coding metasurface beam control RCS reduction
原文传递
Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves 被引量:14
17
作者 Shuo Liu Tie Jun Cui +5 位作者 Ahsan Noor Zui Tao Hao Chi Zhang Guo Dong Bai Yan Yang Xiao Yang Zhou 《Light(Science & Applications)》 SCIE EI CAS CSCD 2018年第1期1047-1057,共11页
Complete control of spatially propagating waves(PWs)and surface waves(SWs)is an ultimate goal that scientists and engineers seek for,in which negative reflection of PW and negative surface wave are two exotic phenomen... Complete control of spatially propagating waves(PWs)and surface waves(SWs)is an ultimate goal that scientists and engineers seek for,in which negative reflection of PW and negative surface wave are two exotic phenomena.Here,we experimentally demonstrate an anisotropic digital coding metasurface capable of controlling both PWs and SWs with a single coding pattern.On the basis of the digital description of coding metasurfaces,a simple coding method is proposed to allow dual functionalities(either PW or SW manipulations)under two orthogonal polarizations at arbitrarily oblique incidences,thus improving the adaptability of digital coding metasurfaces in more practical circumstances.With elaborately designed ellipse-shaped coding particles,we experimentally demonstrate various functions under oblique incidences,including the negative reflection of PW,negative SW,anomalous reflection and their arbitrary combinations,all having good agreements with theoretical and numerical predictions.We believe that the proposed method may enable the digital coding metasurfaces to have broad applications in radar detections,wireless communications and imaging. 展开更多
关键词 ANISOTROPIC coding metasurface negative reflection negative surface wave oblique incidence spatial wave surface wave
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部