Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
Realtime speech communications require high efficient compression algorithms to encode speech signals. As the compressed speech parameters are highly sensitive to transmission errors, robust source and channel decodin...Realtime speech communications require high efficient compression algorithms to encode speech signals. As the compressed speech parameters are highly sensitive to transmission errors, robust source and channel decoding and demodulation schemes are both important and of practical use. In this paper, an it- erative joint souree-channel decoding and demodulation algorithm is proposed for mixed excited linear pre- diction (MELP) vocoder by both exploiting the residual redundancy and passing soft information through- out the receiver while introducing systematic global iteration process to further enhance the performance. Being fully compatible with existing transmitter structure, the proposed algorithm does not introduce addi- tional bandwidth expansion and transmission delay. Simulations show substantial error correcting perfor- mance and synthesized speech quality improvement over conventional separate designed systems in delay and bandwidth constraint channels by using the joint source-channel decoding and demodulation (JSCCM) algorithm.展开更多
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
基金Supported by the National Natural Science Foundation of China (No. 60572081 )
文摘Realtime speech communications require high efficient compression algorithms to encode speech signals. As the compressed speech parameters are highly sensitive to transmission errors, robust source and channel decoding and demodulation schemes are both important and of practical use. In this paper, an it- erative joint souree-channel decoding and demodulation algorithm is proposed for mixed excited linear pre- diction (MELP) vocoder by both exploiting the residual redundancy and passing soft information through- out the receiver while introducing systematic global iteration process to further enhance the performance. Being fully compatible with existing transmitter structure, the proposed algorithm does not introduce addi- tional bandwidth expansion and transmission delay. Simulations show substantial error correcting perfor- mance and synthesized speech quality improvement over conventional separate designed systems in delay and bandwidth constraint channels by using the joint source-channel decoding and demodulation (JSCCM) algorithm.