近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能...近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能视频编码(Versatile Video Coding,VVC/H.266),主要针对人眼视觉特性进行优化,未能充分考虑压缩对机器视觉任务的性能影响。为解决这一问题,本文以多目标跟踪作为典型的机器视觉视频处理任务,提出一种面向机器视觉的VVC帧内编码算法。首先,使用神经网络可解释性方法,梯度加权类激活映射(Gradient-weighted Class Activation Mapping,GradCAM++),对视频内容进行显著性分析,定位出机器视觉任务所关注的区域,并以显著图的形式表示。随后,为了突出视频画面中的关键边缘轮廓信息,本文引入边缘检测并将其结果与显著性分析结果进行融合,得到最终的机器视觉显著性图。最后,基于融合后的机器视觉显著性图改进VVC模式选择过程,优化VVC中的块划分和帧内预测的模式决策过程。通过引入机器视觉失真,代替原有的信号失真来调整率失真优化公式,使得编码器在压缩过程中尽可能保留对视觉任务更为相关的信息。实验结果表明,与VVC基准相比,所提出方法在保持相同机器视觉检测精度的同时,可节约12.7%的码率。展开更多
为了解决多功能视频编码(versatile video coding,VVC)标准下具有相同编码参数的视频双压缩检测方法准确率不高的问题,提出了一种基于编码单元(coding unit,CU)尺寸、划分模式和预测模式的检测方法。对待检测的视频进行多次编解码,分析...为了解决多功能视频编码(versatile video coding,VVC)标准下具有相同编码参数的视频双压缩检测方法准确率不高的问题,提出了一种基于编码单元(coding unit,CU)尺寸、划分模式和预测模式的检测方法。对待检测的视频进行多次编解码,分析并确定VVC流中与压缩编码次数密切相关的基础码流特征;以CU尺寸、划分模式和预测模式构建高级码流特征输入支持向量机完成视频的双压缩检测。实验结果表明,与对比文献的方法相比,所提方法的视频双压缩检测准确率有较大提升,平均准确率达到了95.82%。展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz ba...Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.展开更多
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule...Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.展开更多
Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propos...Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propose a quasi-orthogonal spacetime block code(QOSTBC)that can achieve a full transmission code rate for backscatter communication systems with a four-antenna tag and then extend the scheme to support tags with 2i antennas.Specifically,we first present the system model for the backscatter system.Next,we propose the QOSTBC scheme to encode the tag signals.Then,we provide the corresponding maximum likelihood detection algorithms to recover the tag signals.Finally,simulation results are provided to demonstrate that our proposed QOSTBC scheme and the detection algorithm can achieve a better transmission code rate or symbol error rate performance for backscatter communication systems compared with benchmark schemes.展开更多
Semantic secure communication is an emerging field that combines the principles of source-channel coding with the need for secure data transmission.It is of great significance in modern communications to protect the c...Semantic secure communication is an emerging field that combines the principles of source-channel coding with the need for secure data transmission.It is of great significance in modern communications to protect the confidentiality and privacy of sensitive information and prevent information leaks and malicious attacks.This paper presents a novel approach to semantic secure communication through the utilization of joint source-channel coding,which is based on the design of an automated joint source-channel coding algorithm and an encryption and decryption algorithm based on semantic security.The traditional and state-of-the-art joint source-channel coding algorithms are selected as two baselines for different comparison purposes.Experimental results demonstrate that our proposed algorithm outperforms the first baseline algorithm,the traditional source-channel coding,by 61.21%in efficiency under identical channel conditions(SNR=15 dB).In security,our proposed method can resist 2 more types of attacks compared to the two baselines,exhibiting nearly no increases in time consumption and error rate compared to the state-of-the-art joint source-channel coding algorithm while the secure semantic communication is supported.展开更多
A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering a...A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar.展开更多
Digital watermarking must balance imperceptibility,robustness,complexity,and security.To address the challenge of computational efficiency in trellis-based informed embedding,we propose a modified watermarking framewo...Digital watermarking must balance imperceptibility,robustness,complexity,and security.To address the challenge of computational efficiency in trellis-based informed embedding,we propose a modified watermarking framework that integrates fuzzy c-means(FCM)clustering into the generation off block codewords for labeling trellis arcs.The system incorporates a parallel trellis structure,controllable embedding parameters,and a novel informed embedding algorithm with reduced complexity.Two types of embedding schemes—memoryless and memory-based—are designed to flexibly trade-off between imperceptibility and robustness.Experimental results demonstrate that the proposed method outperforms existing approaches in bit error rate(BER)and computational complexity under various attacks,including additive noise,filtering,JPEG compression,cropping,and rotation.The integration of FCM enhances robustness by increasing the codeword distance,while preserving perceptual quality.Overall,the proposed framework is suitable for real-time and secure watermarking applications.展开更多
Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective ...Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective structural color based on coding metasurface.In this study,the long short-term memory(LSTM)neural network is presented to enable the forward and inverse mapping between coding metasurface structure and corresponding color.The results show that the method can achieve 98%accuracy for the forward prediction of color and 93%accuracy for the inverse design of the structure.Moreover,a cascaded architecture is adopted to train the inverse neural network model,which can solve the nonuniqueness problem of the polarization-selective color reverse design.This study provides a new path for the application and development of structural colors.展开更多
Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing...Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing.However,elastic coding lenses(ECLs)still suffer from low focusing performance,thickness comparable to wavelength,and frequency sensitivity.Here,we consider both the structural and material properties of the coding unit,thus realizing further compression of the thickness of the ECL.We chose the simplest ECL,which consists of only two encoding units.The coding unit 0 is a straight structure constructed using a carbon fiber reinforced composite material,and the coding unit 1 is a zigzag structure constructed using an aluminum material,and the thickness of the ECL constructed using them is only 1/8 of the wavelength.Based on the theoretical design,the arrangement of coding units is further optimized using genetic algorithms,which significantly improves the focusing performance of the lens at different focus and frequencies.This study provides a more effective way to control vibration and noise in advanced structures.展开更多
Metasurfaces offer exceptional capabilities for controlling electromagnetic waves,enabling the realization of unique electromagnetic properties.As communication technology continues to evolve,metasurfaces present prom...Metasurfaces offer exceptional capabilities for controlling electromagnetic waves,enabling the realization of unique electromagnetic properties.As communication technology continues to evolve,metasurfaces present promising applications in wireless communications.This paper reviews the latest advancements in metasurface research within the communication sector,explores metasurface-based wireless relay technologies,and summarizes various wireless communication methods employing different types of metasurfaces across diverse modulation schemes.This paper provides a detailed discussion on the design of wireless communication systems based on coding metasurfaces to simplify transmitter architecture,as well as the development of intelligent coding metasurfaces in the communication field.It also elaborates on the application of vector vortex light fields in metasurface communication.Finally,it offers a forward-looking perspective on wireless communication systems that incorporate coded metasurfaces.This review aims to furnish researchers with a thorough understanding of the current state and future directions of coded metasurface applications in communications.展开更多
To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design...To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design a speech semantic coded communication system,referred to as Deep-STS(i.e.,Deep-learning based Speech To Speech),for the lowbandwidth speech communication.Specifically,we first deeply compress the speech data through extracting the textual information from the speech based on the conformer encoder and connectionist temporal classification decoder at the transmitter side of Deep-STS system.In order to facilitate the final speech timbre recovery,we also extract the short-term timbre feature of speech signals only for the starting 2s duration by the long short-term memory network.Then,the Reed-Solomon coding and hybrid automatic repeat request protocol are applied to improve the reliability of transmitting the extracted text and timbre feature over the wireless channel.Third,we reconstruct the speech signal by the mel spectrogram prediction network and vocoder,when the extracted text is received along with the timbre feature at the receiver of Deep-STS system.Finally,we develop the demo system based on the USRP and GNU radio for the performance evaluation of Deep-STS.Numerical results show that the ac-Received:Jan.17,2024 Revised:Jun.12,2024 Editor:Niu Kai curacy of text extraction approaches 95%,and the mel cepstral distortion between the recovered speech signal and the original one in the spectrum domain is less than 10.Furthermore,the experimental results show that the proposed Deep-STS system can reduce the total delay of speech communication by 85%on average compared to the G.723 coding at the transmission rate of 5.4 kbps.More importantly,the coding rate of the proposed Deep-STS system is extremely low,only 0.2 kbps for continuous speech communication.It is worth noting that the Deep-STS with lower coding rate can support the low-zero-power speech communication,unveiling a new era in ultra-efficient coded communications.展开更多
Deep learning-based Joint Source-Channel Coding(JSCC)is a crucial component in semantic communication,and recent research has made significant progress in adapting to different channels.In this paper,we propose a mult...Deep learning-based Joint Source-Channel Coding(JSCC)is a crucial component in semantic communication,and recent research has made significant progress in adapting to different channels.In this paper,we propose a multi-stage progressive technique called Deep learning based Progressive Joint Source-Channel Coding(DP-JSCC).This approach partitions the source into multiple stages and transmits the signals continuously.The receiver gradually enhances the quality of image reconstruction by progressively receiving the signals,offering greater flexibility compared to existing dynamic rate transmission methods.The model adopts a lightweight architectural design,where we introduce an efficient module called the Inverted Shuffle Attention Bottleneck(ISAB)and incorporate self-attention mechanisms in the encoding and decoding process to capture signal correlations and establish long-range dependencies.Additionally,we introduce the Progressive Focus Weight Allocation(PFWA)method to improve the image reconstruction capability in progressive transmission tasks.These design enhance the expressive capacity of the model.Simulation results demonstrate that DP-JSCC can flexibly adjust the transmission rate according to requirements without the need for retraining or deployment,enabling continuous optimization of signals at different rates.Furthermore,compared to stateof-the-art JSCC methods,DP-JSCC exhibits advantages in terms of computational complexity,parameter count,and reconstruction performance.展开更多
The code of the list of sea and island problems is the unique identification code of the regulatory files,which is accompanied by the whole life cycle of the regulatory"discovery,verification and disposal".S...The code of the list of sea and island problems is the unique identification code of the regulatory files,which is accompanied by the whole life cycle of the regulatory"discovery,verification and disposal".Standardized coding of problems found by supervision and tracking and recording the whole life cycle of supervision can quickly guide supervisors to find problems,identify problems,initiate responses and carry out follow-up disposal,which is a reflection of whole-process management of supervision.Combining with sea and island regulatory systems and mechanisms,combed the supervision business flow,divides the supervision link,based on the existing coding system,from the Angle of supervision refinement,puts forward a whole lifetime oriented regulatory system of sea and island issues list for coding,coding through to find and stop and disposal of the three links all process application scenarios,The implementation of the whole business"one code"association,the whole process of"one code"management,practice verification shows the effectiveness of the method,compared with the original coding rules for the supervision of all links and results reflect more intuitive,comprehensive,can be better applied to the practice of supervision.展开更多
Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semant...Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings.展开更多
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The...Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.展开更多
Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly o...Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly on a quantum channel with QSDC. Higher channel capacity and noise suppression capabilities are key to achieving longdistance quantum communication. Here, we report a continuous-variable QSDC scheme based on mask-coding and orbital angular momentum, in which the mask-coding is employed to protect the security of the transmitting messages and to suppress the influence of excess noise. The combination of orbital angular momentum and information block transmission effectively improves the secrecy capacity. In the 800 information blocks ×1310 bits length 10-km experiment, the results show a statistical average bit error rate of 0.38%, a system excess noise value of 0.0184 SNU, and a final secrecy capacity of 6.319×10~6 bps. Therefore, this scheme reduces error bits while increasing secrecy capacity, providing a solution for long-distance large-scale quantum communication, which is capable of transmitting text, images and other information of reasonable size.展开更多
文摘现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路滤波器。首先,设计一个轻量级分类网络,按照滤波难易程度将编码树单元(coding tree unit,CTU)划分为难、中、易3类;然后,构建3个融合了特征信息增强融合模块的基于CNN的滤波网络,以满足不同QP下的3类CTU滤波需求。将所提出的环路滤波器集成到多功能视频编码(versatile video coding,VVC)标准H.266/VVC的测试软件VTM 6.0中,替换原有的去块效应滤波器(deblocking filter,DBF)、样本自适应偏移(sample adaptive offset,SAO)滤波器和自适应环路滤波器。实验结果表明,该方法平均降低了3.14%的比特率差值(Bjøntegaard delta bit rate,BD-BR),与其他基于CNN的环路滤波器相比,显著提高了压缩效率,并减少了压缩伪影。
文摘近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能视频编码(Versatile Video Coding,VVC/H.266),主要针对人眼视觉特性进行优化,未能充分考虑压缩对机器视觉任务的性能影响。为解决这一问题,本文以多目标跟踪作为典型的机器视觉视频处理任务,提出一种面向机器视觉的VVC帧内编码算法。首先,使用神经网络可解释性方法,梯度加权类激活映射(Gradient-weighted Class Activation Mapping,GradCAM++),对视频内容进行显著性分析,定位出机器视觉任务所关注的区域,并以显著图的形式表示。随后,为了突出视频画面中的关键边缘轮廓信息,本文引入边缘检测并将其结果与显著性分析结果进行融合,得到最终的机器视觉显著性图。最后,基于融合后的机器视觉显著性图改进VVC模式选择过程,优化VVC中的块划分和帧内预测的模式决策过程。通过引入机器视觉失真,代替原有的信号失真来调整率失真优化公式,使得编码器在压缩过程中尽可能保留对视觉任务更为相关的信息。实验结果表明,与VVC基准相比,所提出方法在保持相同机器视觉检测精度的同时,可节约12.7%的码率。
文摘为了解决多功能视频编码(versatile video coding,VVC)标准下具有相同编码参数的视频双压缩检测方法准确率不高的问题,提出了一种基于编码单元(coding unit,CU)尺寸、划分模式和预测模式的检测方法。对待检测的视频进行多次编解码,分析并确定VVC流中与压缩编码次数密切相关的基础码流特征;以CU尺寸、划分模式和预测模式构建高级码流特征输入支持向量机完成视频的双压缩检测。实验结果表明,与对比文献的方法相比,所提方法的视频双压缩检测准确率有较大提升,平均准确率达到了95.82%。
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
文摘Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.
基金supported by the National Natural Science Foundation of China(No.12104141).
文摘Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.
基金supported by Beijing Municipal Natural Science Foundation(L222002)the Natural Science Foundation of China(U22B2004).
文摘Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propose a quasi-orthogonal spacetime block code(QOSTBC)that can achieve a full transmission code rate for backscatter communication systems with a four-antenna tag and then extend the scheme to support tags with 2i antennas.Specifically,we first present the system model for the backscatter system.Next,we propose the QOSTBC scheme to encode the tag signals.Then,we provide the corresponding maximum likelihood detection algorithms to recover the tag signals.Finally,simulation results are provided to demonstrate that our proposed QOSTBC scheme and the detection algorithm can achieve a better transmission code rate or symbol error rate performance for backscatter communication systems compared with benchmark schemes.
基金supported in part by the National Key R&D Program of China under Grant 2022YFB3103500in part by the National Natural Science Foundation of China under Grant 62302195.
文摘Semantic secure communication is an emerging field that combines the principles of source-channel coding with the need for secure data transmission.It is of great significance in modern communications to protect the confidentiality and privacy of sensitive information and prevent information leaks and malicious attacks.This paper presents a novel approach to semantic secure communication through the utilization of joint source-channel coding,which is based on the design of an automated joint source-channel coding algorithm and an encryption and decryption algorithm based on semantic security.The traditional and state-of-the-art joint source-channel coding algorithms are selected as two baselines for different comparison purposes.Experimental results demonstrate that our proposed algorithm outperforms the first baseline algorithm,the traditional source-channel coding,by 61.21%in efficiency under identical channel conditions(SNR=15 dB).In security,our proposed method can resist 2 more types of attacks compared to the two baselines,exhibiting nearly no increases in time consumption and error rate compared to the state-of-the-art joint source-channel coding algorithm while the secure semantic communication is supported.
基金Project supported by the Open Fund of Wuhan National Research Center for Optoelectronics(Grant No.2022WNLOKF012)the National College Students Innovation Innovation and Entrepreneurship Training Program(Grant No.2023102930147).
文摘A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar.
基金funded by the National Science and Technology Council,Taiwan,under grant number NSTC 114-2221-E-167-005-MY3,and NSTC 113-2221-E-167-006-.
文摘Digital watermarking must balance imperceptibility,robustness,complexity,and security.To address the challenge of computational efficiency in trellis-based informed embedding,we propose a modified watermarking framework that integrates fuzzy c-means(FCM)clustering into the generation off block codewords for labeling trellis arcs.The system incorporates a parallel trellis structure,controllable embedding parameters,and a novel informed embedding algorithm with reduced complexity.Two types of embedding schemes—memoryless and memory-based—are designed to flexibly trade-off between imperceptibility and robustness.Experimental results demonstrate that the proposed method outperforms existing approaches in bit error rate(BER)and computational complexity under various attacks,including additive noise,filtering,JPEG compression,cropping,and rotation.The integration of FCM enhances robustness by increasing the codeword distance,while preserving perceptual quality.Overall,the proposed framework is suitable for real-time and secure watermarking applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375137 and 62175114).
文摘Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective structural color based on coding metasurface.In this study,the long short-term memory(LSTM)neural network is presented to enable the forward and inverse mapping between coding metasurface structure and corresponding color.The results show that the method can achieve 98%accuracy for the forward prediction of color and 93%accuracy for the inverse design of the structure.Moreover,a cascaded architecture is adopted to train the inverse neural network model,which can solve the nonuniqueness problem of the polarization-selective color reverse design.This study provides a new path for the application and development of structural colors.
基金Project supported by the National Natural Science Foundation of China(Grant No.12404531)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant No.23KJB140011)。
文摘Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing.However,elastic coding lenses(ECLs)still suffer from low focusing performance,thickness comparable to wavelength,and frequency sensitivity.Here,we consider both the structural and material properties of the coding unit,thus realizing further compression of the thickness of the ECL.We chose the simplest ECL,which consists of only two encoding units.The coding unit 0 is a straight structure constructed using a carbon fiber reinforced composite material,and the coding unit 1 is a zigzag structure constructed using an aluminum material,and the thickness of the ECL constructed using them is only 1/8 of the wavelength.Based on the theoretical design,the arrangement of coding units is further optimized using genetic algorithms,which significantly improves the focusing performance of the lens at different focus and frequencies.This study provides a more effective way to control vibration and noise in advanced structures.
基金supported in part by National Natural Science Foundation of China(U24A20307 and 62175224)in part by the science and technology innovation leading talent project of special support plan for high-level talents in Zhejiang Province(2021R52032)+2 种基金in part by the China Jiliang University Basic Research ExpensesZhejiang University Students Science and Technology Innovation Activity Plan-New Talent Plan(2024R409C054)in part by the Natural Science Foundation of Zhejiang Province under Grant(ZCLZ25F0502).
文摘Metasurfaces offer exceptional capabilities for controlling electromagnetic waves,enabling the realization of unique electromagnetic properties.As communication technology continues to evolve,metasurfaces present promising applications in wireless communications.This paper reviews the latest advancements in metasurface research within the communication sector,explores metasurface-based wireless relay technologies,and summarizes various wireless communication methods employing different types of metasurfaces across diverse modulation schemes.This paper provides a detailed discussion on the design of wireless communication systems based on coding metasurfaces to simplify transmitter architecture,as well as the development of intelligent coding metasurfaces in the communication field.It also elaborates on the application of vector vortex light fields in metasurface communication.Finally,it offers a forward-looking perspective on wireless communication systems that incorporate coded metasurfaces.This review aims to furnish researchers with a thorough understanding of the current state and future directions of coded metasurface applications in communications.
基金supported in part by National Natural Science Foundation of China under Grants 62122069,62071431,and 62201507.
文摘To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design a speech semantic coded communication system,referred to as Deep-STS(i.e.,Deep-learning based Speech To Speech),for the lowbandwidth speech communication.Specifically,we first deeply compress the speech data through extracting the textual information from the speech based on the conformer encoder and connectionist temporal classification decoder at the transmitter side of Deep-STS system.In order to facilitate the final speech timbre recovery,we also extract the short-term timbre feature of speech signals only for the starting 2s duration by the long short-term memory network.Then,the Reed-Solomon coding and hybrid automatic repeat request protocol are applied to improve the reliability of transmitting the extracted text and timbre feature over the wireless channel.Third,we reconstruct the speech signal by the mel spectrogram prediction network and vocoder,when the extracted text is received along with the timbre feature at the receiver of Deep-STS system.Finally,we develop the demo system based on the USRP and GNU radio for the performance evaluation of Deep-STS.Numerical results show that the ac-Received:Jan.17,2024 Revised:Jun.12,2024 Editor:Niu Kai curacy of text extraction approaches 95%,and the mel cepstral distortion between the recovered speech signal and the original one in the spectrum domain is less than 10.Furthermore,the experimental results show that the proposed Deep-STS system can reduce the total delay of speech communication by 85%on average compared to the G.723 coding at the transmission rate of 5.4 kbps.More importantly,the coding rate of the proposed Deep-STS system is extremely low,only 0.2 kbps for continuous speech communication.It is worth noting that the Deep-STS with lower coding rate can support the low-zero-power speech communication,unveiling a new era in ultra-efficient coded communications.
文摘Deep learning-based Joint Source-Channel Coding(JSCC)is a crucial component in semantic communication,and recent research has made significant progress in adapting to different channels.In this paper,we propose a multi-stage progressive technique called Deep learning based Progressive Joint Source-Channel Coding(DP-JSCC).This approach partitions the source into multiple stages and transmits the signals continuously.The receiver gradually enhances the quality of image reconstruction by progressively receiving the signals,offering greater flexibility compared to existing dynamic rate transmission methods.The model adopts a lightweight architectural design,where we introduce an efficient module called the Inverted Shuffle Attention Bottleneck(ISAB)and incorporate self-attention mechanisms in the encoding and decoding process to capture signal correlations and establish long-range dependencies.Additionally,we introduce the Progressive Focus Weight Allocation(PFWA)method to improve the image reconstruction capability in progressive transmission tasks.These design enhance the expressive capacity of the model.Simulation results demonstrate that DP-JSCC can flexibly adjust the transmission rate according to requirements without the need for retraining or deployment,enabling continuous optimization of signals at different rates.Furthermore,compared to stateof-the-art JSCC methods,DP-JSCC exhibits advantages in terms of computational complexity,parameter count,and reconstruction performance.
文摘The code of the list of sea and island problems is the unique identification code of the regulatory files,which is accompanied by the whole life cycle of the regulatory"discovery,verification and disposal".Standardized coding of problems found by supervision and tracking and recording the whole life cycle of supervision can quickly guide supervisors to find problems,identify problems,initiate responses and carry out follow-up disposal,which is a reflection of whole-process management of supervision.Combining with sea and island regulatory systems and mechanisms,combed the supervision business flow,divides the supervision link,based on the existing coding system,from the Angle of supervision refinement,puts forward a whole lifetime oriented regulatory system of sea and island issues list for coding,coding through to find and stop and disposal of the three links all process application scenarios,The implementation of the whole business"one code"association,the whole process of"one code"management,practice verification shows the effectiveness of the method,compared with the original coding rules for the supervision of all links and results reflect more intuitive,comprehensive,can be better applied to the practice of supervision.
基金supported by the National Natural Science Foundation of China (Nos. NSFC 61925105, 62322109, 62171257 and U22B2001)the Xplorer Prize in Information and Electronics technologiesthe Tsinghua University (Department of Electronic Engineering)-Nantong Research Institute for Advanced Communication Technologies Joint Research Center for Space, Air, Ground and Sea Cooperative Communication Network Technology
文摘Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LL.Z012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901).
文摘Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62071381 and 62301430)Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY014)+1 种基金Scientific Research Plan Project of Shaanxi Education Department (Natural Science Special Project (Grant No. 23JK0680)Young Talent Fund of Xi’an Association for Science and Technology (Grant No. 959202313011)。
文摘Quantum secure direct communication(QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly on a quantum channel with QSDC. Higher channel capacity and noise suppression capabilities are key to achieving longdistance quantum communication. Here, we report a continuous-variable QSDC scheme based on mask-coding and orbital angular momentum, in which the mask-coding is employed to protect the security of the transmitting messages and to suppress the influence of excess noise. The combination of orbital angular momentum and information block transmission effectively improves the secrecy capacity. In the 800 information blocks ×1310 bits length 10-km experiment, the results show a statistical average bit error rate of 0.38%, a system excess noise value of 0.0184 SNU, and a final secrecy capacity of 6.319×10~6 bps. Therefore, this scheme reduces error bits while increasing secrecy capacity, providing a solution for long-distance large-scale quantum communication, which is capable of transmitting text, images and other information of reasonable size.