Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing be...Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing benefits from its ability of processing data in parallel,the communication burden between different servers is incurred,thereby the computation process is detained.Recent researches have applied coding in distributed computing to reduce the communication burden,where repetitive computation is utilized to enable multicast opportunities so that the same coded information can be reused across different servers.To handle the computation tasks in practical heterogeneous systems,we propose a novel coding scheme to effectively mitigate the "straggling effect" in distributed computing.We assume that there are two types of servers in the system and the only difference between them is their computational capabilities,the servers with lower computational capabilities are called stragglers.Given any ratio of fast servers to slow servers and any gap of computational capabilities between them,we achieve approximately the same computation time for both fast and slow servers by assigning different amounts of computation tasks to them,thus reducing the overall computation time.Furthermore,we investigate the informationtheoretic lower bound of the inter-communication load and show that the lower bound is within a constant multiplicative gap to the upper bound achieved by our scheme.Various simulations also validate the effectiveness of the proposed scheme.展开更多
In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab C...In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab Computers,Materials&Continua,2023,Vol.77,No.2,pp.2031–2047.DOI:10.32604/cmc.2023.043687,URL:https://www.techscience.com/cmc/v77n2/54831,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,ST42DE,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”.展开更多
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-...In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content deliver...Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.展开更多
Normally,in the downlink Network-Coded Multiple Access(NCMA)system,the same power is allocated to different users.However,equal power allocation is unsuitable for some scenarios,such as when user devices have differen...Normally,in the downlink Network-Coded Multiple Access(NCMA)system,the same power is allocated to different users.However,equal power allocation is unsuitable for some scenarios,such as when user devices have different Quality of Service(QoS)requirements.Hence,we study the power allocation in the downlink NCMA system in this paper,and propose a downlink Network-Coded Multiple Access with Diverse Power(NCMA-DP),wherein different amounts of power are allocated to different users.In terms of the Bit Error Rate(BER)of the multi-user decoder,and the number of packets required to correctly decode the message,the performance of the user with more allocated power is greatly improved compared to the Conventional NCMA(NCMA-C).Meanwhile,the performance of the user with less allocated power is still much better than NCMA-C.Furthermore,the overall throughput of NCMA-DP is greatly improved compared to that of NCMA-C.The simulation results demonstrate the remarkable performance of the proposed NCMA-DP.展开更多
Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,t...Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close.展开更多
Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are...Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified.展开更多
Optimization of mapping rule of bit-interleaved Turbo coded modulation with 16 quadrature amplitude modulation (QAM) is investigated based on different impacts of various encoded bits sequence on Turbo decoding perfor...Optimization of mapping rule of bit-interleaved Turbo coded modulation with 16 quadrature amplitude modulation (QAM) is investigated based on different impacts of various encoded bits sequence on Turbo decoding performance. Furthermore, bit-interleaved in-phase and quadrature phase (I-Q) Turbo coded modulation scheme are designed similarly with I-Q trellis coded modulation (TCM). Through performance evaluation and analysis, it can be seen that the novel mapping rule outperforms traditional one and the I-Q Turbo coded modulation can not achieve good performance as expected. Therefore, there is not obvious advantage in using I-Q method in bit-interleaved Turbo coded modulation.展开更多
A true random coded photon counting Lidar system is proposed in this paper,in which a single photon detector acts as the true random sequence signal generator instead of the traditional function generator.Compared wit...A true random coded photon counting Lidar system is proposed in this paper,in which a single photon detector acts as the true random sequence signal generator instead of the traditional function generator.Compared with the traditional pseudo-random coded method,the true random coded method not only improves the anti-crosstalk capability of the system,but more importantly,it effectively overcomes the adverse effect of the detector’s dead time on the ranging performance.The experiment results show that the ranging performance of the true random coded method is obviously better than that of the pseudo-random coded method.As a result,a three-dimensional scanning imaging of a model car is completed by the true random coded method.展开更多
A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circula...A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.展开更多
In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial res...By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.展开更多
Technologies of underground mobile positioning were proposed based on LiDAR data and coded sequence pattern landmarks for mine shafts and tunnels environment to meet the needs of fast and accurate positioning and navi...Technologies of underground mobile positioning were proposed based on LiDAR data and coded sequence pattern landmarks for mine shafts and tunnels environment to meet the needs of fast and accurate positioning and navigation of equipments in the mine underground without satellite navigation signals. A coded sequence pattern was employed for automatic matching of 3D scans. The methods of SIFT feature, Otsu segmentation and fast hough transformation were described for the identification, positioning and interpretation of the coded sequence patterns, respectively. The POSIT model was presented for speeding up computation of the translation and rotation parameters of LiDAR point data, so as to achieve automatic 3D mapping of mine shafts and tunnels. The moving positioning experiment was applied to evaluating the accuracy of proposed pose estimation method from LiDAR scans and coded sequence pattern landmarks acquired in an indoor environment. The performance was evaluated using ground truth data of the indoor setting so as to measure derivations with six degrees of freedom.展开更多
In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteris...In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.展开更多
With the advancements in nuclear energy,methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety.Coded aperture imaging technology is widely use...With the advancements in nuclear energy,methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety.Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources.The coded array is a major component of a coded aperture gamma camera,and it affects the key performance parameters of the camera.Currently,commonly used coded arrays such as uniformly redundant arrays(URAs)and modified uniformly redundant arrays(MURAs)have prime numbers of rows or columns and may lead to wastage of detector pixels.A 16×16 coded array was designed on the basis of an existing 16×16 multi-pixel position-sensitive cadmium zinc telluride detector.The digital signal-to-noise(SNR)ratio of the point spread function at the center of the array is 25.67.Furthermore,Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed.With the same angular resolution,the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA.Simulations(Am-241,Co-57,Ir-192,Cs-137)and experiments(Co-57)are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA.The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA.However,as the photon energy increases,the gap becomes almost negligible.展开更多
The increase of frame rate,though with the potential in a coded ultrasound system,is generally concomitant with the simultaneous transmission of a number of apertures,and in consequence leads to increased cross-talks ...The increase of frame rate,though with the potential in a coded ultrasound system,is generally concomitant with the simultaneous transmission of a number of apertures,and in consequence leads to increased cross-talks between different apertures.In view of this,a new coding scheme using staggering repetition interval was proposed.The transmitting signals were constructed by repeating the two(or more) modulated codes using staggering repetition interval,and then allocated to and transmitted simultaneously among different apertures.The decoding process was based on the subsection-matched filter under the assistance of different matched filters for different apertures.At last the outputs of subsection-matched filtering were added together.Staggering changed the positions of cross-correlation(CC) peaks from coinciding,which resulted in an effective reduction of CC.Our theoretical analysis and simulations showed that,the coding scheme can be used to reduce cross-talk,and a good cross-talk reduction will be achieved if the staggering delay is kept in an appropriate range.展开更多
Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)op...Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)optimization to improve bit error rate(BER)performance and reduce the complexity of FTN equalizer.In our proposal,the information rate(IR)or spectral efficiency(SE)is employed and verified as a better performance metric for CM-FTN than the minimum Euclidian distance(MED).The precoder of CM-FTN is optimized for maximizing the IR criterion using the bare-bones particle swarm optimization(BB-PSO)algorithm.Further,a three-carrier CM-FTN system model is used to capture the broadening effect of precoder.Also targeting for the IR maximization,the inter-symbol interference(ISI)length for CS is optimized to reduce the receiver complexity without performance loss.Simulation results demonstrate that our method has a 0.6dB precoding gain compared with the nonprecoding scheme and a maximum of 87.5%of the complexity of FTN equalizer is reduced without BER loss.展开更多
To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squar...To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation ( Sq ) less than 1 nm and surface pro- file error ( St ) less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The e- valuation of actual measured surfaces further indicates that the proposed method is capable of pre- cisely evaluating micro-structured surfaces.展开更多
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.
基金supported by NSF China(No.T2421002,62061146002,62020106005)。
文摘Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing benefits from its ability of processing data in parallel,the communication burden between different servers is incurred,thereby the computation process is detained.Recent researches have applied coding in distributed computing to reduce the communication burden,where repetitive computation is utilized to enable multicast opportunities so that the same coded information can be reused across different servers.To handle the computation tasks in practical heterogeneous systems,we propose a novel coding scheme to effectively mitigate the "straggling effect" in distributed computing.We assume that there are two types of servers in the system and the only difference between them is their computational capabilities,the servers with lower computational capabilities are called stragglers.Given any ratio of fast servers to slow servers and any gap of computational capabilities between them,we achieve approximately the same computation time for both fast and slow servers by assigning different amounts of computation tasks to them,thus reducing the overall computation time.Furthermore,we investigate the informationtheoretic lower bound of the inter-communication load and show that the lower bound is within a constant multiplicative gap to the upper bound achieved by our scheme.Various simulations also validate the effectiveness of the proposed scheme.
文摘In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab Computers,Materials&Continua,2023,Vol.77,No.2,pp.2031–2047.DOI:10.32604/cmc.2023.043687,URL:https://www.techscience.com/cmc/v77n2/54831,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,ST42DE,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-02160).
文摘In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,61831008)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297,2021A1515011572)Shenzhen Science and Technology Program ZDSYS20210623091808025,Stable Support Plan Program GXWD20231129102638002.
文摘Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.
文摘Normally,in the downlink Network-Coded Multiple Access(NCMA)system,the same power is allocated to different users.However,equal power allocation is unsuitable for some scenarios,such as when user devices have different Quality of Service(QoS)requirements.Hence,we study the power allocation in the downlink NCMA system in this paper,and propose a downlink Network-Coded Multiple Access with Diverse Power(NCMA-DP),wherein different amounts of power are allocated to different users.In terms of the Bit Error Rate(BER)of the multi-user decoder,and the number of packets required to correctly decode the message,the performance of the user with more allocated power is greatly improved compared to the Conventional NCMA(NCMA-C).Meanwhile,the performance of the user with less allocated power is still much better than NCMA-C.Furthermore,the overall throughput of NCMA-DP is greatly improved compared to that of NCMA-C.The simulation results demonstrate the remarkable performance of the proposed NCMA-DP.
基金supported by the National Natural Science Foundation of China(No.61971062)BUPT Excellent Ph.D.Students Foundation(CX2022153)。
文摘Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close.
基金supported by the National Key R&D Program of China(No.2021YFE0110900)the National Natural Science Foundation of China(Nos.U22B2078 and 11991033)。
文摘Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified.
文摘Optimization of mapping rule of bit-interleaved Turbo coded modulation with 16 quadrature amplitude modulation (QAM) is investigated based on different impacts of various encoded bits sequence on Turbo decoding performance. Furthermore, bit-interleaved in-phase and quadrature phase (I-Q) Turbo coded modulation scheme are designed similarly with I-Q trellis coded modulation (TCM). Through performance evaluation and analysis, it can be seen that the novel mapping rule outperforms traditional one and the I-Q Turbo coded modulation can not achieve good performance as expected. Therefore, there is not obvious advantage in using I-Q method in bit-interleaved Turbo coded modulation.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(61805249)the Youth Innovation Promotion Association CAS(2019369).
文摘A true random coded photon counting Lidar system is proposed in this paper,in which a single photon detector acts as the true random sequence signal generator instead of the traditional function generator.Compared with the traditional pseudo-random coded method,the true random coded method not only improves the anti-crosstalk capability of the system,but more importantly,it effectively overcomes the adverse effect of the detector’s dead time on the ranging performance.The experiment results show that the ranging performance of the true random coded method is obviously better than that of the pseudo-random coded method.As a result,a three-dimensional scanning imaging of a model car is completed by the true random coded method.
文摘A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)+2 种基金the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1083)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.
基金Project(2011CB707102)supported by the National Basic Research Program of ChinaProjects(40901220,41001302)supported by the National Natural Science Foundation of China+1 种基金Project(122025)supported by Fok Ying Tong Education Foundation,ChinaProject(N100401009)supported by Fundamental Research Funds for Central Universities,China
文摘Technologies of underground mobile positioning were proposed based on LiDAR data and coded sequence pattern landmarks for mine shafts and tunnels environment to meet the needs of fast and accurate positioning and navigation of equipments in the mine underground without satellite navigation signals. A coded sequence pattern was employed for automatic matching of 3D scans. The methods of SIFT feature, Otsu segmentation and fast hough transformation were described for the identification, positioning and interpretation of the coded sequence patterns, respectively. The POSIT model was presented for speeding up computation of the translation and rotation parameters of LiDAR point data, so as to achieve automatic 3D mapping of mine shafts and tunnels. The moving positioning experiment was applied to evaluating the accuracy of proposed pose estimation method from LiDAR scans and coded sequence pattern landmarks acquired in an indoor environment. The performance was evaluated using ground truth data of the indoor setting so as to measure derivations with six degrees of freedom.
基金National Outstanding Youth Founda-tion (No.60525303)National Natural Science Foundation of China(No.60404022,60704009)Natural Science Foundation of Hebei Province (No.F2005000390,F2006000270).
文摘In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.
基金supported by the National Natural Science Foundation of China(No.11675078)the Primary Research and Development Plan of Jiangsu Province(No.BE2017729)the Foundation of Graduate Innovation Center in NUAA(No.kfjj20190614)。
文摘With the advancements in nuclear energy,methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety.Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources.The coded array is a major component of a coded aperture gamma camera,and it affects the key performance parameters of the camera.Currently,commonly used coded arrays such as uniformly redundant arrays(URAs)and modified uniformly redundant arrays(MURAs)have prime numbers of rows or columns and may lead to wastage of detector pixels.A 16×16 coded array was designed on the basis of an existing 16×16 multi-pixel position-sensitive cadmium zinc telluride detector.The digital signal-to-noise(SNR)ratio of the point spread function at the center of the array is 25.67.Furthermore,Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed.With the same angular resolution,the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA.Simulations(Am-241,Co-57,Ir-192,Cs-137)and experiments(Co-57)are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA.The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA.However,as the photon energy increases,the gap becomes almost negligible.
基金Project (Nos.60772147 and 60871060) supported by the National Natural Science Foundation of China
文摘The increase of frame rate,though with the potential in a coded ultrasound system,is generally concomitant with the simultaneous transmission of a number of apertures,and in consequence leads to increased cross-talks between different apertures.In view of this,a new coding scheme using staggering repetition interval was proposed.The transmitting signals were constructed by repeating the two(or more) modulated codes using staggering repetition interval,and then allocated to and transmitted simultaneously among different apertures.The decoding process was based on the subsection-matched filter under the assistance of different matched filters for different apertures.At last the outputs of subsection-matched filtering were added together.Staggering changed the positions of cross-correlation(CC) peaks from coinciding,which resulted in an effective reduction of CC.Our theoretical analysis and simulations showed that,the coding scheme can be used to reduce cross-talk,and a good cross-talk reduction will be achieved if the staggering delay is kept in an appropriate range.
基金This work was supported by National Natural Science Foundation of China(No.61961014).
文摘Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)optimization to improve bit error rate(BER)performance and reduce the complexity of FTN equalizer.In our proposal,the information rate(IR)or spectral efficiency(SE)is employed and verified as a better performance metric for CM-FTN than the minimum Euclidian distance(MED).The precoder of CM-FTN is optimized for maximizing the IR criterion using the bare-bones particle swarm optimization(BB-PSO)algorithm.Further,a three-carrier CM-FTN system model is used to capture the broadening effect of precoder.Also targeting for the IR maximization,the inter-symbol interference(ISI)length for CS is optimized to reduce the receiver complexity without performance loss.Simulation results demonstrate that our method has a 0.6dB precoding gain compared with the nonprecoding scheme and a maximum of 87.5%of the complexity of FTN equalizer is reduced without BER loss.
基金Supported by the Programme of Introducing Talents of Discipline to Universities (B07018)
文摘To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation ( Sq ) less than 1 nm and surface pro- file error ( St ) less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The e- valuation of actual measured surfaces further indicates that the proposed method is capable of pre- cisely evaluating micro-structured surfaces.