This study focuses on Chinese social media platforms(Weibo and Douyin),adopting a mixed-methods approach combining quantitative and qualitative research to explore patterns of code-switching in online language and its...This study focuses on Chinese social media platforms(Weibo and Douyin),adopting a mixed-methods approach combining quantitative and qualitative research to explore patterns of code-switching in online language and its role in identity negotiation among internet users.Quantitative analysis of 208 valid questionnaires and subsequent qualitative discourse analysis reveal that 83%of users unconsciously engage in Chinese-English code-switching,primarily demonstrating intra-sentential switching patterns where English words embed as salient“figures”against the Chinese“ground.”Results of the Chi-square test indicate significant correlations between code-switching frequency,types,and users’identity dimensions(p<0.05).Data identified three identity functions:cultural belonging,in-group signaling,and persona curation.The study confirms that code-switching in digital contexts has transcended the level of linguistic efficiency to become an important social infrastructure for internet users to construct their identities.展开更多
This article focuses on the challenges of rural economic development under the strategy of rural revitalization,and deeply analyzes the current situation of rural economic development.Research has found that although ...This article focuses on the challenges of rural economic development under the strategy of rural revitalization,and deeply analyzes the current situation of rural economic development.Research has found that although the rural revitalization strategy has achieved significant results in improving residents’quality of life,promoting agricultural modernization,it still faces challenges such as severe loss of human resources,insufficient agricultural technological innovation,and backward infrastructure construction.In response to these challenges,this paper proposes optimization strategies from three aspects:strengthening rural education and talent team construction,promoting agricultural technology innovation and achievement transformation,and increasing investment in rural infrastructure construction.展开更多
Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,thi...Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,this study proposes a strategic digital recovery framework,including revised campaign content,transparent communication through social media,and data-driven customer segmentation based on diverse skincare needs and cultural backgrounds.A PESTLE analysis underscores the importance of digital transformation and rising social consciousness in brand management.Findings suggest that inclusive messaging,precision targeting,and omnichannel digital engagement are key to restoring brand trust and reputation in the digital landscape.展开更多
Building a technology alliance is the main strategy for the United States to maintain its scientific and technological hegemony under its technopolitical strategic framework.After Joe Biden took office,the United Stat...Building a technology alliance is the main strategy for the United States to maintain its scientific and technological hegemony under its technopolitical strategic framework.After Joe Biden took office,the United States implemented“small yard with high fences”strategy for scientific and technological competition,as the first step toward building a technology alliance.The main goal is to restrict the flow of strategic emerging technologies and factors of innovation to rival countries.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no...Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.展开更多
Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and...Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment.展开更多
Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food...Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food chain.The development of efficient wastewater detection and treatment methods is essential for mitigating this environmental hazard.Carbon dots(CDs),as emerging carbon-based nanomaterials,exhibit properties such as biocompatibility,photoluminescence(PL),water solubility,and strong adsorption,positioning them as promising candidates for environmental monitoring and management.Particularly in wastewater treatment,their optical and electron transfer properties make them ideal for pollutant detection and removal.Despite their potential,comprehensive reviews on CDs'role in wastewater treatment are scarce,often lacking detailed insights into their synthesis,PL mechanisms,and practical applications.This review systematically addresses the synthesis,PL mechanisms,and wastewater treatment applications of CDs,aiming to bridge existing research gaps.It begins with an overview of CDs structure and classification,essential for grasping their properties and uses.The paper then explores the pivotal PL mechanisms of CDs,crucial for their sensing capabilities.Next,comprehensive synthesis strategies are presented,encompassing both top-down and bottom-up strategies such as arc discharge,chemical oxidation,and hydrothermal/solvothermal synthesis.The diversity of these methods highlights the potential for tailored CDs production to suit specific environmental applications.Furthermore,the review systematically discusses the applications of CDs in wastewater treatment,including sensing,inorganic removal,and organic degradation.Finally,it delves into the research prospects and challenges of CDs,proposing future directions to enhance their role in wastewater treatment.展开更多
To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and ...To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and transportation modes—harvester waiting for unloading(HWU)and transporter fol-lowing for unloading(TFU)—were proposed,and a harvesting-unloading-transportation(HUT)strategy was defined.By breaking down the main stages of the collaborative operation,designing module-state machines(MSMs),and constructing state-transition chains,a HUT collaborative operation logic frame-work suitable for the embedded navigation controller was designed using the concept and method of the finite-state machine(FSM).This method addresses the multiple-stage,nonsequential,and complex processes in HUT collaborative operations.Simulations and field-harvesting experiments were performed to evaluate the applicability of this proposed strategy and system.The experimental results showed that the HUT collaborative operation strategy effectively integrated path planning,path-tracking control,inter-vehicle communication,collaborative operation control,and implementation control.The cotrans-porter system completed the entire process of harvesting,unloading,and transportation.The field-harvesting experiment revealed that a harvest efficiency of 0.42 hm^(2)·h^(−1) was achieved.This study can provide insight into collaborative harvesting and solutions for the harvesting process of unmanned farms.展开更多
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv...Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.展开更多
BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequen...BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequently influenced by the patient's nutritional status and the quality of nursing care provided.AIM To examine the comprehensive impact of personalized nutritional support and nursing strategies on the postoperative rehabilitation of patients with liver cancer.METHODS In this study,a retrospective comparative analysis was conducted involving 60 post-operative liver cancer patients.The subjects were selected as subjects and divided into two groups based on differing nursing interventions,with each group comprising 30 patients.The control group received standard nutritional support and care,whereas the experimental group received individualized nutritional support and nursing strategies.The study aimed to evaluate the impact of individualized nutrition by comparing the rehabilitation indices,nutritional status,quality of life(QoL),and complication rates between the two groups.RESULTS The results showed that the recovery index of the experimental group was significantly better than that of the control group 2 weeks after surgery,and the average liver function recovery index of the experimental group was 85.significantly higher than that of the control group(73.67±7.19).In terms of nutritional status,the serum albumin level and body weight stabilization rate of the experimental group were also significantly higher than those of the control group,which were 42.33±2.4 g/L and 93.3%,respectively,compared with 36.01±3.85 g/L and 76.7%of the control group.In addition,the average QoL score of the experimental group was 84.66±3.7 points,which was significantly higher than that of the control group(70.92±4.28 points).At the psychological level,the average anxiety score of the experimental group was 1.17±0.29,and the average depression score was 1.47±0.4,which were significantly lower than the 2.26±0.42 and 2.57±0.45 of the control group.This showed that patients in the experimental group were better relieved of anxiety and depression under the individualized nutrition support and nursing strategy.More importantly,the complication rate in the experimental group was only 10%,much lower than the 33.3%in the control group.CONCLUSION Personalized nutritional support and tailored nursing strategies significantly enhance the postoperative rehabilitation of liver cancer patients.Consequently,it is recommended to implement and advocate for these individualized approaches to improve both the recovery outcomes and QoL for these patients.展开更多
Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a...Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke.展开更多
Wire-arc directed energy deposition(wire-arc DED)enables the fabrication of large-scale metal components with rapid manufacturing ability and diverse material selection,making it a compelling technology in industries ...Wire-arc directed energy deposition(wire-arc DED)enables the fabrication of large-scale metal components with rapid manufacturing ability and diverse material selection,making it a compelling technology in industries and defenses.However,challenges in both macroscale and microscale defects still limit printed component widespread applications.Recent advances in automatic and intelligent technologies have brought a range of quality controllable strategies to the forefront.This review covers these new strategies for the printing component,including path planning,process monitoring,auxiliary processes,and post processing,while discussing the expectation for structure and quality improvement.In addition,the work brings new areas of intelligent wire-arc DED development,including advances in digital twin,visualization,and human-processing interaction to promote its performance.It is anticipated that a focus on intelligent system will be key to smart and high-quality manufacturing for future wire-arc DED.展开更多
Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug...Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug discovery but also inspire innovative strategies in drug development.The biomimetic synthesis of natural products employs principles from biomimicry,applying inspiration from biogenetic processes to design synthetic strategies that mimic biosynthetic processes.Biomimetic synthesis is a highly efficient approach in synthetic chemistry,as it addresses critical challenges in the synthesis of structurally complex natural products with significant biological and medicinal importance.It has gained widespread attention from researchers in chemistry,biology,pharmacy,and related fields,underscoring its interdisciplinary impact.In this perspective,we present recent advances and challenges in the biomimetic synthesis of natural products,along with the significance and prospects of this field,highlighting the transformative potential of biomimetic synthesis strategies for both chemical and biosynthetic approaches to natural product synthesis in the pursuit of novel therapeutic agents.展开更多
This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers f...This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers face increasing challenges in teaching practice.Their inappropriate behaviors not only affect the classroom atmosphere but may also negatively impact students’learning outcomes.Therefore,researching the characteristics of novice teachers’inappropriate behaviors and their intervention strategies holds significant scientific and social value.This study employs a combination of quantitative and qualitative methods to analyze the behavioral patterns of novice teachers in classroom teaching and proposes corresponding intervention strategies.The results indicate that novice teachers’inappropriate behaviors mainly manifest as poor classroom management,monotonous teaching methods,and insufficient interaction with students.Based on these findings,the study proposes a series of effective intervention strategies,including enhancing teacher training,optimizing teaching design,and promoting positive interactions between teachers and students.The conclusions of the study not only provide practical guidance for educational practice but also point out directions for future research,emphasizing the crucial role of teacher professional development in improving teaching quality.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectivenes...The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.展开更多
Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribu...Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.展开更多
Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precurs...Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precursorswas conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021.Alkanes were the most abundant VOC group,contributing to 55.0%of TVOCs concentration(56.43±21.10 ppb).OVOCs,aromatics,halides,alkenes,and alkynes contributed 18.7%,9.6%,9.3%,5.2%and 1.9%,respectively.The observational site shifted from a typical VOC control regime to a mixed regime from May to July,which can be explained by the significant increase of RO_(x)production,resulting in the transition of environment from NOx saturation to radical saturation with respect to O_(3)production.The optimal O_(3)control strategy should be dynamically changed depending on the transition of control regime.Under NOx saturation condition,minimizing the proportion of NOx in reduction could lead to better achievement of O_(3)alleviation.Under mixed control regime,the cut percentage gets the top priority for the effectiveness of O_(3)control.Five VOCs sources were identified:temperature dependent source(28.1%),vehicular exhausts(19.9%),petrochemical industries(7.2%),solvent&gasoline usage(32.3%)and manufacturing industries(12.6%).The increase of temperature and radiation would enhance the evaporation related VOC emissions,resulting in the increase of VOC concentration and the change of RO_(x)circulation.Our results highlight determination of the optimal control strategies for O_(3)pollution in a typical YRD industrial city.展开更多
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat...Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.展开更多
文摘This study focuses on Chinese social media platforms(Weibo and Douyin),adopting a mixed-methods approach combining quantitative and qualitative research to explore patterns of code-switching in online language and its role in identity negotiation among internet users.Quantitative analysis of 208 valid questionnaires and subsequent qualitative discourse analysis reveal that 83%of users unconsciously engage in Chinese-English code-switching,primarily demonstrating intra-sentential switching patterns where English words embed as salient“figures”against the Chinese“ground.”Results of the Chi-square test indicate significant correlations between code-switching frequency,types,and users’identity dimensions(p<0.05).Data identified three identity functions:cultural belonging,in-group signaling,and persona curation.The study confirms that code-switching in digital contexts has transcended the level of linguistic efficiency to become an important social infrastructure for internet users to construct their identities.
文摘This article focuses on the challenges of rural economic development under the strategy of rural revitalization,and deeply analyzes the current situation of rural economic development.Research has found that although the rural revitalization strategy has achieved significant results in improving residents’quality of life,promoting agricultural modernization,it still faces challenges such as severe loss of human resources,insufficient agricultural technological innovation,and backward infrastructure construction.In response to these challenges,this paper proposes optimization strategies from three aspects:strengthening rural education and talent team construction,promoting agricultural technology innovation and achievement transformation,and increasing investment in rural infrastructure construction.
文摘Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,this study proposes a strategic digital recovery framework,including revised campaign content,transparent communication through social media,and data-driven customer segmentation based on diverse skincare needs and cultural backgrounds.A PESTLE analysis underscores the importance of digital transformation and rising social consciousness in brand management.Findings suggest that inclusive messaging,precision targeting,and omnichannel digital engagement are key to restoring brand trust and reputation in the digital landscape.
文摘Building a technology alliance is the main strategy for the United States to maintain its scientific and technological hegemony under its technopolitical strategic framework.After Joe Biden took office,the United States implemented“small yard with high fences”strategy for scientific and technological competition,as the first step toward building a technology alliance.The main goal is to restrict the flow of strategic emerging technologies and factors of innovation to rival countries.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
文摘Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.
文摘Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment.
基金supported by the Natural Science Foundation of Hebei Province(No.E2022208046)National Science Foundation of China(No.52004080)+2 种基金Key project of National Natural Science Foundation of China(No.U20A20130)Key research and development project of Hebei Province(No.22373704D)2023 Central Government Guide Local Science and Technology Development Fund Project(No.236Z1812 G)。
文摘Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food chain.The development of efficient wastewater detection and treatment methods is essential for mitigating this environmental hazard.Carbon dots(CDs),as emerging carbon-based nanomaterials,exhibit properties such as biocompatibility,photoluminescence(PL),water solubility,and strong adsorption,positioning them as promising candidates for environmental monitoring and management.Particularly in wastewater treatment,their optical and electron transfer properties make them ideal for pollutant detection and removal.Despite their potential,comprehensive reviews on CDs'role in wastewater treatment are scarce,often lacking detailed insights into their synthesis,PL mechanisms,and practical applications.This review systematically addresses the synthesis,PL mechanisms,and wastewater treatment applications of CDs,aiming to bridge existing research gaps.It begins with an overview of CDs structure and classification,essential for grasping their properties and uses.The paper then explores the pivotal PL mechanisms of CDs,crucial for their sensing capabilities.Next,comprehensive synthesis strategies are presented,encompassing both top-down and bottom-up strategies such as arc discharge,chemical oxidation,and hydrothermal/solvothermal synthesis.The diversity of these methods highlights the potential for tailored CDs production to suit specific environmental applications.Furthermore,the review systematically discusses the applications of CDs in wastewater treatment,including sensing,inorganic removal,and organic degradation.Finally,it delves into the research prospects and challenges of CDs,proposing future directions to enhance their role in wastewater treatment.
基金the National Key Research and Development Program of China(2021YFD2000600)the National Natural Science Foundation of China(32071914)+1 种基金the Modern Agricultural Industry Technology System of China(CARS-170405)the Key Research and Development Program(Science and Technology Demonstration Project)project of Shandong Province(2022SFGC0202).
文摘To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and transportation modes—harvester waiting for unloading(HWU)and transporter fol-lowing for unloading(TFU)—were proposed,and a harvesting-unloading-transportation(HUT)strategy was defined.By breaking down the main stages of the collaborative operation,designing module-state machines(MSMs),and constructing state-transition chains,a HUT collaborative operation logic frame-work suitable for the embedded navigation controller was designed using the concept and method of the finite-state machine(FSM).This method addresses the multiple-stage,nonsequential,and complex processes in HUT collaborative operations.Simulations and field-harvesting experiments were performed to evaluate the applicability of this proposed strategy and system.The experimental results showed that the HUT collaborative operation strategy effectively integrated path planning,path-tracking control,inter-vehicle communication,collaborative operation control,and implementation control.The cotrans-porter system completed the entire process of harvesting,unloading,and transportation.The field-harvesting experiment revealed that a harvest efficiency of 0.42 hm^(2)·h^(−1) was achieved.This study can provide insight into collaborative harvesting and solutions for the harvesting process of unmanned farms.
基金supported by the National Natural Science Foundation of China(42167068,22269020)the Gansu Province Higher Education Industry Support Plan Project(2023CYZC-68)the Central Guidance for Local Science and Technology Development Funds Project(YDZX20216200001007)。
文摘Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.
文摘BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequently influenced by the patient's nutritional status and the quality of nursing care provided.AIM To examine the comprehensive impact of personalized nutritional support and nursing strategies on the postoperative rehabilitation of patients with liver cancer.METHODS In this study,a retrospective comparative analysis was conducted involving 60 post-operative liver cancer patients.The subjects were selected as subjects and divided into two groups based on differing nursing interventions,with each group comprising 30 patients.The control group received standard nutritional support and care,whereas the experimental group received individualized nutritional support and nursing strategies.The study aimed to evaluate the impact of individualized nutrition by comparing the rehabilitation indices,nutritional status,quality of life(QoL),and complication rates between the two groups.RESULTS The results showed that the recovery index of the experimental group was significantly better than that of the control group 2 weeks after surgery,and the average liver function recovery index of the experimental group was 85.significantly higher than that of the control group(73.67±7.19).In terms of nutritional status,the serum albumin level and body weight stabilization rate of the experimental group were also significantly higher than those of the control group,which were 42.33±2.4 g/L and 93.3%,respectively,compared with 36.01±3.85 g/L and 76.7%of the control group.In addition,the average QoL score of the experimental group was 84.66±3.7 points,which was significantly higher than that of the control group(70.92±4.28 points).At the psychological level,the average anxiety score of the experimental group was 1.17±0.29,and the average depression score was 1.47±0.4,which were significantly lower than the 2.26±0.42 and 2.57±0.45 of the control group.This showed that patients in the experimental group were better relieved of anxiety and depression under the individualized nutrition support and nursing strategy.More importantly,the complication rate in the experimental group was only 10%,much lower than the 33.3%in the control group.CONCLUSION Personalized nutritional support and tailored nursing strategies significantly enhance the postoperative rehabilitation of liver cancer patients.Consequently,it is recommended to implement and advocate for these individualized approaches to improve both the recovery outcomes and QoL for these patients.
基金supported by the National Natural Science Foundation of China,82471345(to LC)the Key Research and Development Program for Social Development by the Jiangsu Provincial Department of Science and Technology.No.BE2022668(to LC).
文摘Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke.
基金fully appreciate financial support from NingXia Natural Science Foundation for Outstanding Young Scholar(No.2024AAC04002)CAS“Light of West China”Program,National Natural Science Foundation of China(Key Program,No.12232013)Natural Science Foundation of Ningxia(Key Program,No.2022AAC2003)。
文摘Wire-arc directed energy deposition(wire-arc DED)enables the fabrication of large-scale metal components with rapid manufacturing ability and diverse material selection,making it a compelling technology in industries and defenses.However,challenges in both macroscale and microscale defects still limit printed component widespread applications.Recent advances in automatic and intelligent technologies have brought a range of quality controllable strategies to the forefront.This review covers these new strategies for the printing component,including path planning,process monitoring,auxiliary processes,and post processing,while discussing the expectation for structure and quality improvement.In addition,the work brings new areas of intelligent wire-arc DED development,including advances in digital twin,visualization,and human-processing interaction to promote its performance.It is anticipated that a focus on intelligent system will be key to smart and high-quality manufacturing for future wire-arc DED.
基金financially supported by the National Key Research and Development Program of China(2023YFC3503902)the National Natural Science Foundation of China(82430108,82293681(82293680),and 82321004)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120015 and 2024A1515030103)the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000026)the Science and Technology Projects in Guangzhou(202102070001)。
文摘Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug discovery but also inspire innovative strategies in drug development.The biomimetic synthesis of natural products employs principles from biomimicry,applying inspiration from biogenetic processes to design synthetic strategies that mimic biosynthetic processes.Biomimetic synthesis is a highly efficient approach in synthetic chemistry,as it addresses critical challenges in the synthesis of structurally complex natural products with significant biological and medicinal importance.It has gained widespread attention from researchers in chemistry,biology,pharmacy,and related fields,underscoring its interdisciplinary impact.In this perspective,we present recent advances and challenges in the biomimetic synthesis of natural products,along with the significance and prospects of this field,highlighting the transformative potential of biomimetic synthesis strategies for both chemical and biosynthetic approaches to natural product synthesis in the pursuit of novel therapeutic agents.
文摘This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers face increasing challenges in teaching practice.Their inappropriate behaviors not only affect the classroom atmosphere but may also negatively impact students’learning outcomes.Therefore,researching the characteristics of novice teachers’inappropriate behaviors and their intervention strategies holds significant scientific and social value.This study employs a combination of quantitative and qualitative methods to analyze the behavioral patterns of novice teachers in classroom teaching and proposes corresponding intervention strategies.The results indicate that novice teachers’inappropriate behaviors mainly manifest as poor classroom management,monotonous teaching methods,and insufficient interaction with students.Based on these findings,the study proposes a series of effective intervention strategies,including enhancing teacher training,optimizing teaching design,and promoting positive interactions between teachers and students.The conclusions of the study not only provide practical guidance for educational practice but also point out directions for future research,emphasizing the crucial role of teacher professional development in improving teaching quality.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
基金the support from the National Natural Science Foun-dation of China(Grant No.U21A20311)the Distinguished Scientist Fellowship Program(DSFP)at King Saud University,Riyadh,Saudi Arabia.
文摘The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.
基金supported in part by the National Nat-ural Science Foundation of China(52177110)Key Pro-gram of the National Natural Science Foundation of China(U22B20106,U2142206)+2 种基金Shenzhen Science and Technology Program(JCYJ20210324131409026)the Science and Technology Project of the State Grid Corpo-ration of China(5200-202319382A-2-3-XG)State Grid Zhejiang Elctric Power Co.,Ltd.Science and Tech-nology Project(B311DS24001A).
文摘Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.
基金supported by the National Natural Science Foundation of China(Nos.42005086,91844301,and 41805100)the National Key Research and Development Programof China(No.2022YFC3703500)+2 种基金China Postdoctoral Science Foundation(No.2023M733028)the Key Research and Development Program of Zhejiang Province(Nos.2021C03165 and 2022C03084)the Ecological and Environmental Scientific Research and Achievement Promotion Project of Zhejiang Province(No.2020HT0048).
文摘Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precursorswas conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021.Alkanes were the most abundant VOC group,contributing to 55.0%of TVOCs concentration(56.43±21.10 ppb).OVOCs,aromatics,halides,alkenes,and alkynes contributed 18.7%,9.6%,9.3%,5.2%and 1.9%,respectively.The observational site shifted from a typical VOC control regime to a mixed regime from May to July,which can be explained by the significant increase of RO_(x)production,resulting in the transition of environment from NOx saturation to radical saturation with respect to O_(3)production.The optimal O_(3)control strategy should be dynamically changed depending on the transition of control regime.Under NOx saturation condition,minimizing the proportion of NOx in reduction could lead to better achievement of O_(3)alleviation.Under mixed control regime,the cut percentage gets the top priority for the effectiveness of O_(3)control.Five VOCs sources were identified:temperature dependent source(28.1%),vehicular exhausts(19.9%),petrochemical industries(7.2%),solvent&gasoline usage(32.3%)and manufacturing industries(12.6%).The increase of temperature and radiation would enhance the evaporation related VOC emissions,resulting in the increase of VOC concentration and the change of RO_(x)circulation.Our results highlight determination of the optimal control strategies for O_(3)pollution in a typical YRD industrial city.
文摘Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.