The frequency band between 5 010 MHz and 5 030 MHz allocated as C band has been used as a candidate in the global navigation satellite systems (GNSS) along with more and more naviga- tion services in L band. The pot...The frequency band between 5 010 MHz and 5 030 MHz allocated as C band has been used as a candidate in the global navigation satellite systems (GNSS) along with more and more naviga- tion services in L band. The potential benefits and technical requirements of C band for satellite navi- gation have been analyzed before. However the degradation of effective carrier-power-to-noise densi- ty ratio( A (C/No )eu) based on code tracking spectral sensitivity coefficient( CT_SSC ) as a compati- bility assessment methodology for potential GNSS radio frequency compatibility in C-Band has not been discussed clearly. So the compatibility of the signals in the C band between BeiDou (BD) B1 C and GPS L1C, L1C/A, Galileo E1Os as the interoperability or classical signals in L band is analyzed. Simulation results reveal the interference degree between BD III B1C and GPS L1C/A, L1C, Galileo E1OS. The results can also reveal that the multiplexed binary offset carrier (MBOC) and binary phase shift keying (BPSK) modulation is not appropriate for C band.展开更多
Noncoherent early-late processing (NELP) code tracking loops are often implemented using digital hardware for digital global positioning system (GPS) receivers. Noncommensurate sampling technology is widely used b...Noncoherent early-late processing (NELP) code tracking loops are often implemented using digital hardware for digital global positioning system (GPS) receivers. Noncommensurate sampling technology is widely used because it is viewed as an effective solution to cope with the drawback of digital effects. However, the relationship between the sampling rate and auto-correlation function (ACF) is not adequately characterized by traditional analysis. The principles for selecting the sampling rate are still not apparent. In order to solve this problem, we first analyzed the effects of different sampling rates on ACF and obtained the analytical form of a discrete auto-correlation function (DACF) for a noncommensurate sampling rate. Based on the result, the relationship between the step variation in DACF and NELP parameters such as sampling rate, integration time, and correlator spacing was determined. The maximum step variation size of DACF was also determined. However, considering the actual situation, additional factors such as code Doppler shift, precorrelation filter, and thermal noise may degrade the step variation of DACE The relationship between the step variation and these factors was analyzed separately. An appropriate sampling rate and appropriate correlator spacing were proposed to achieve the typical accuracy of measurement. The numerical simulation verified the validity of the above theoretical analyses, and finally, the conclusions and design constraints for the digital GPS receiver are summarized.展开更多
The code tracking loop is a key component for user positioning. The pseudorange information of Bei Dou B1 signals has been fused and changed for vector tracking, so a correlation output model for complex scenarios is ...The code tracking loop is a key component for user positioning. The pseudorange information of Bei Dou B1 signals has been fused and changed for vector tracking, so a correlation output model for complex scenarios is designed to prevent the propagation of error and valuate the signal performance. The relevant software and hardware factors that affect the output are analyzed.A single channel time-division multiplexing(TDM) method for multicorrelation data extraction is proposed. Statistical characteristics of the correlation output data for both vector and scalar structures are evaluated. Simulation results show that correlation outputs for both structures follow normal or Chi-squared distributions in normal conditions, and the Gamma distribution in harsh conditions. It is shown that a tracking model based on the multi-channel fusion hardly changes the probability distribution of the correlation output in the normal case, but it reduces the ranging error of the code loop, and hence the tracking ability of the code loop for weak signals is improved. Furthermore, vector tracking changes the pseudorange characteristics of channels anytime, and affects the mutual correlation outputs of the code loops in the abnormal case. This study provides a basis for the subsequent design of autonomous integrity algorithms for vector tracking.展开更多
Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of ...Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of a rotary encoder disk read by a group of even spread reading heads to provide a unique codeword for every angular position and features such that every two adjacent words differ in exactly one component, thus avoiding coarse error. The existing construction or combination methods are helpful but not sufficient in determining the period of the STCGC of large word length and the theoretical approach needs further development to extend the word length. Three principles, such as the seed combination, short code removal and ergodicity examination were put forward that suffice determination of the optimal period for such absolute rotary encoders using STCGC with even spread heads. The optimal periods of STCGC in 3 through 29 bit length were determined and listed.展开更多
针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短...针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短码信号序列估计方法。将LSC-DSSS信号输入NIC神经网络以估计随机采样起点,再通过不断输入数据训练NIC神经网络权值向量。当网络收敛时,权值向量的符号值即为LSC-DSSS信号的复合码序列片段。使用延迟相乘,消除幅度模糊与短扩频码序列的影响,再利用梅西算法获得扰码序列的生成多项式。仿真实验结果表明,NIC神经网络较特征值分解法的抗噪声性能提高6 dB,同时较Hebbian准则神经网络所需学习组数减少50%。展开更多
基金Supported by the National High Technology Research and Development Program of China(863Program)(2011AA120502)
文摘The frequency band between 5 010 MHz and 5 030 MHz allocated as C band has been used as a candidate in the global navigation satellite systems (GNSS) along with more and more naviga- tion services in L band. The potential benefits and technical requirements of C band for satellite navi- gation have been analyzed before. However the degradation of effective carrier-power-to-noise densi- ty ratio( A (C/No )eu) based on code tracking spectral sensitivity coefficient( CT_SSC ) as a compati- bility assessment methodology for potential GNSS radio frequency compatibility in C-Band has not been discussed clearly. So the compatibility of the signals in the C band between BeiDou (BD) B1 C and GPS L1C, L1C/A, Galileo E1Os as the interoperability or classical signals in L band is analyzed. Simulation results reveal the interference degree between BD III B1C and GPS L1C/A, L1C, Galileo E1OS. The results can also reveal that the multiplexed binary offset carrier (MBOC) and binary phase shift keying (BPSK) modulation is not appropriate for C band.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0501301)the Key Laboratory for Fault Diagnosis and Maintenance of Spacecraft in Orbit(Grant No.SDML_OF2015006)
文摘Noncoherent early-late processing (NELP) code tracking loops are often implemented using digital hardware for digital global positioning system (GPS) receivers. Noncommensurate sampling technology is widely used because it is viewed as an effective solution to cope with the drawback of digital effects. However, the relationship between the sampling rate and auto-correlation function (ACF) is not adequately characterized by traditional analysis. The principles for selecting the sampling rate are still not apparent. In order to solve this problem, we first analyzed the effects of different sampling rates on ACF and obtained the analytical form of a discrete auto-correlation function (DACF) for a noncommensurate sampling rate. Based on the result, the relationship between the step variation in DACF and NELP parameters such as sampling rate, integration time, and correlator spacing was determined. The maximum step variation size of DACF was also determined. However, considering the actual situation, additional factors such as code Doppler shift, precorrelation filter, and thermal noise may degrade the step variation of DACE The relationship between the step variation and these factors was analyzed separately. An appropriate sampling rate and appropriate correlator spacing were proposed to achieve the typical accuracy of measurement. The numerical simulation verified the validity of the above theoretical analyses, and finally, the conclusions and design constraints for the digital GPS receiver are summarized.
基金supported by the National Natural Science Fundation of China(41474027)
文摘The code tracking loop is a key component for user positioning. The pseudorange information of Bei Dou B1 signals has been fused and changed for vector tracking, so a correlation output model for complex scenarios is designed to prevent the propagation of error and valuate the signal performance. The relevant software and hardware factors that affect the output are analyzed.A single channel time-division multiplexing(TDM) method for multicorrelation data extraction is proposed. Statistical characteristics of the correlation output data for both vector and scalar structures are evaluated. Simulation results show that correlation outputs for both structures follow normal or Chi-squared distributions in normal conditions, and the Gamma distribution in harsh conditions. It is shown that a tracking model based on the multi-channel fusion hardly changes the probability distribution of the correlation output in the normal case, but it reduces the ranging error of the code loop, and hence the tracking ability of the code loop for weak signals is improved. Furthermore, vector tracking changes the pseudorange characteristics of channels anytime, and affects the mutual correlation outputs of the code loops in the abnormal case. This study provides a basis for the subsequent design of autonomous integrity algorithms for vector tracking.
基金Project(JX2004J0170) supported by the Foundation of Beijing Jiaotong University, China
文摘Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of a rotary encoder disk read by a group of even spread reading heads to provide a unique codeword for every angular position and features such that every two adjacent words differ in exactly one component, thus avoiding coarse error. The existing construction or combination methods are helpful but not sufficient in determining the period of the STCGC of large word length and the theoretical approach needs further development to extend the word length. Three principles, such as the seed combination, short code removal and ergodicity examination were put forward that suffice determination of the optimal period for such absolute rotary encoders using STCGC with even spread heads. The optimal periods of STCGC in 3 through 29 bit length were determined and listed.
文摘针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短码信号序列估计方法。将LSC-DSSS信号输入NIC神经网络以估计随机采样起点,再通过不断输入数据训练NIC神经网络权值向量。当网络收敛时,权值向量的符号值即为LSC-DSSS信号的复合码序列片段。使用延迟相乘,消除幅度模糊与短扩频码序列的影响,再利用梅西算法获得扰码序列的生成多项式。仿真实验结果表明,NIC神经网络较特征值分解法的抗噪声性能提高6 dB,同时较Hebbian准则神经网络所需学习组数减少50%。