从三维Mesh数据中分割建筑物立面以识别对象,是三维场景理解的关键,但现有方法多依赖高成本的精细标注数据。针对该问题,提出了一种半监督学习方法,引入一种基于对比学习和一致性正则化的半监督语义分割(semi-supervised semantic segme...从三维Mesh数据中分割建筑物立面以识别对象,是三维场景理解的关键,但现有方法多依赖高成本的精细标注数据。针对该问题,提出了一种半监督学习方法,引入一种基于对比学习和一致性正则化的半监督语义分割(semi-supervised semantic segmentation based on contrastive learning and consistency regularization,SS_CC)方法,用于分割三维Mesh数据的建筑物立面。在SS_CC方法中,改进后的对比学习模块利用正负样本之间的类可分性,能够更有效地利用类特征信息;提出的基于特征空间的一致性正则化损失函数,从挖掘全局特征的角度增强了对所提取建筑物立面特征的鉴别力。实验结果表明,所提出的SS_CC方法在F1分数、mIoU指标上优于当前一些主流方法,且在建筑物的墙面和窗户上的分割效果相对更好。展开更多
文摘从三维Mesh数据中分割建筑物立面以识别对象,是三维场景理解的关键,但现有方法多依赖高成本的精细标注数据。针对该问题,提出了一种半监督学习方法,引入一种基于对比学习和一致性正则化的半监督语义分割(semi-supervised semantic segmentation based on contrastive learning and consistency regularization,SS_CC)方法,用于分割三维Mesh数据的建筑物立面。在SS_CC方法中,改进后的对比学习模块利用正负样本之间的类可分性,能够更有效地利用类特征信息;提出的基于特征空间的一致性正则化损失函数,从挖掘全局特征的角度增强了对所提取建筑物立面特征的鉴别力。实验结果表明,所提出的SS_CC方法在F1分数、mIoU指标上优于当前一些主流方法,且在建筑物的墙面和窗户上的分割效果相对更好。