期刊文献+
共找到1,305篇文章
< 1 2 66 >
每页显示 20 50 100
A critical review on oxidation behavior of Co-based superalloys 被引量:2
1
作者 Chenghao PEI Qingshuang MA +4 位作者 Qiuzhi GAO Yue YANG Yuhang DU Hailian ZHANG Huijun LI 《Chinese Journal of Aeronautics》 2025年第3期183-206,共24页
The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review present... The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review presents an overview of the research progress on oxidation behavior of Co-based superalloys, including oxidation kinetics, oxides morphology, the formation and spallation of oxide layers, and importantly, the synergistic effects of alloying elements on oxidation resistance—a critical area considering the complex interactions with multiple alloying elements. Additionally, this review compares the oxidation resistance of single crystal versus polycrystalline alloys. The effect of phase interface and dislocations on oxidation behavior is also discussed. While significant progress has been achieved, areas necessitating further investigation include optimizing alloy compositions for enhanced oxidation resistance and understanding the long-term stability of oxide layers. The future prospects for Co-based superalloys are promising as ongoing research aims to address the existing challenges and unlock new applications at even higher operating temperatures. 展开更多
关键词 COBALT SUPERALLOYS OXIDATION Alloying elements MICROSTRUCTURE Temperature
原文传递
Ru doping triggering reconstruction of cobalt phosphide for coupling glycerol electrooxidation with seawater electrolysis 被引量:1
2
作者 Binglu Deng Jie Shen +4 位作者 Jinxing Lu Chuqiang Huang Zhuoyuan Chen Feng Peng Yunpeng Liu 《Journal of Energy Chemistry》 2025年第1期317-326,共10页
Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corros... Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling. 展开更多
关键词 Glycerol electrooxidation Hydrogen evolution Ru doping Cobalt phosphide Bifunctional electrocatalysts
在线阅读 下载PDF
CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries 被引量:1
3
作者 Zhong-Hui Sun Yu-Qi Zhang +3 位作者 Zhen-Yi Gu Dong-Yang Qu Hong-Yu Guan Xing-Long Wu 《Chinese Chemical Letters》 2025年第1期568-573,共6页
The metal ion batteries have gained widespread attention for wearable electronics due to their competitive energy density and long cycling life.Exploring the advanced anode materials is significant for next generation... The metal ion batteries have gained widespread attention for wearable electronics due to their competitive energy density and long cycling life.Exploring the advanced anode materials is significant for next generation energy storage systems.However,severe electrode volume changes and sluggish redox kinetics are the critical problems for lithium/potassium ion batteries(LIBs/PIBs)towards large-scale applications.Herein,we prepare a novel anode material,which consists of reduced graphene oxide wrapping one-dimensional(1D)N-doped porous carbon nanotube with cobalt phosphoselenide(CoPSe)nanoparticles embedded inside them(r GO@Co PSe/NC).Benefited from the dual carbon decorations and ultrafine nanoparticles structure,it achieves a reversible capacity of 245 mAh/g at 5 A/g after 2000 cycles for LIBs and 215 mAh/g at 1 A/g after 500 cycles for PIBs.The pseudocapacitance and GITT measurements are used to investigate the electrochemical kinetics of r GO@Co PSe/NC for LIBs.In addition,the lithium ion full cell also shows good electrochemical performance when paired with high capacity LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode.This work provides a feasible electrode design strategy for high-efficiency metal ion batteries based on multidimensional nanoarchitecture engineering and composition tailoring. 展开更多
关键词 Cobalt phosphoselenide Lithium-ion batteries Potassium-ion batteries Reduced graphene oxide Structural stability Full cell
原文传递
Multiple yolks-shell cobalt phosphosulfide nanocrystals encapsulating into rich heteroatoms co-doped carbon frameworks for advanced sodium/potassium ion batteries 被引量:1
4
作者 Yining Li Shimei Wu +3 位作者 Lantao Chen Haosen Fan Yufei Zhang Lingxing Zeng 《Chinese Chemical Letters》 2025年第9期678-683,共6页
In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.How... In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.However,they are also confronted with the problem of unstable battery performance due to the heavy volume expansion and sluggish ion reaction kinetics.Herein,yolk-shell cobalt phosphosulfide nanocrystals encapsulating into multi-heterogeneous atom(N,P,S)-doped carbon framework(Co_(9)S_(8)/CoP@NPSC)were constructed by employing dodecahedral ZIF-67 as precursor and a polymer as carbon sources through simultaneous sulfidation and phosphorization processes.The synergistic effect of Co_(9)S_(8)and CoP component and the yolk-shell structure greatly improve the bettery performance and structural stability.In addition,the multiple hetero-atoms doped carbon frameworks enhance the conductivity of the electrode materials and increase the spacing of carbon layers to supply sufficient active sites and facilitate the Na^(+)/K^(+)transport.The electrochemical results demonstrated that Co_(9)S_(8)/CoP@NPSC exhibited the pleasant reversible capacity(360.47 mAh/g at 1 A/g)after 300 cycles and an unpredictable cycling stability(103.22 mAh/g after 1000 cycles)in the SIBs application.The ex-situ XRD and XPS analyses were further applied to study the sodium ion storage mechanism and the multi-step phase transition reaction of the yolk-shell heterogeneous structure.This work provides new perspectives for the preparation of novel structure metal phosphosulfide and their applications in anode materials for sodium/potassium batteries and other secondary batteries. 展开更多
关键词 Yolks-shell cobalt phosphosulfate Hetero-atoms doping Synergistic effect Sodium-ion batteries Potassium ion batteries
原文传递
Fabrication of flake-like NiCo_(2)O_(4)/reduced graphene oxide/melamine-derived carbon foam as an excellent microwave absorber 被引量:1
5
作者 Konghu Tian Hang Yang +4 位作者 Chao Zhang Ruiwen Shu Qun Shao Xiaowei Liu Kaipeng Gao 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期556-565,共10页
Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In t... Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In this study,a flake-like nickel cobaltate/re-duced graphene oxide/melamine-derived carbon foam(FNC/RGO/MDCF)was successfully fabricated through a combination of solvo-thermal treatment and high-temperature pyrolysis.Results indicated that RGO was evenly distributed in the MDCF skeleton,providing ef-fective support for the load growth of FNC on its surface.Sample S3,the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h,exhibited a minimum reflection loss(RL_(min))of-66.44 dB at a thickness of 2.29 mm.When the thickness was reduced to 1.50 mm,the optimal effective absorption bandwidth was 3.84 GHz.Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss,multiple reflection,scattering,in-terface polarization,and dipole polarization. 展开更多
关键词 carbon foam reduced graphene oxide flake-like nickel cobaltate microwave absorbing materials
在线阅读 下载PDF
Unraveling the significance of cobalt on transformation kinetics,crystallography and impact toughness in high-strength steels
6
作者 Yishuang Yu Jingxiao Zhao +3 位作者 Xuelin Wang Hui Guo Zhenjia Xie Chengjia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期380-390,共11页
This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that ... This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels. 展开更多
关键词 high-strength steel COBALT transformation kinetics CRYSTALLOGRAPHY impact toughness
在线阅读 下载PDF
Dynamic Regulation of Hydrogen Bonding Networks and Solvation Structures for Synergistic Solar‑Thermal Desalination of Seawater and Catalytic Degradation of Organic Pollutants
7
作者 Ming‑Yuan Yu Jing Wu +3 位作者 Guang Yin Fan‑Zhen Jiao Zhong‑Zhen Yu Jin Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期548-565,共18页
Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei... Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants. 展开更多
关键词 Solar steam generation Seawater desalination Catalytic degradation Bacterial cellulose Cobalt hydroxycarbonate nanorods
在线阅读 下载PDF
Effect of Saccharin on Crystallization Behavior of Electroless Cobalt Plating
8
作者 Yu-Xin Luo Jing-Jing Wang +5 位作者 Lu Wang Zi-Yi Yan Yi Ma Xin Bo Jing-Shuang Dang Zeng-Lin Wang 《电化学(中英文)》 北大核心 2025年第8期23-33,共11页
In the process of electroless cobalt plating,the saccharin additive can significantly change the surface morphology,texture orientation,and conductivity of the cobalt coating layer.When the amount of saccharin was 3 m... In the process of electroless cobalt plating,the saccharin additive can significantly change the surface morphology,texture orientation,and conductivity of the cobalt coating layer.When the amount of saccharin was 3 mg·L^(-1),the cobalt coating transformed from disordered large grains to a honeycomb structure,with a preferred orientation of(002)facet on hexago-nal close-packed(HCP)cobalt crystals.The resistivity of the cobalt film decreased to 14.4μΩ·cm,and further decreased to 10.7μΩ·cm after the annealing treatment.When the concentration of saccharin was increased,the grain size was gradually refined and a“stone forest”structure was observed,with the preferred orientation remaining unchanged.The addition of saccharin also slightly improves the purity of cobalt coating to a certain extent.Through the study of the crystallization behavior of cobalt electroless plating,saccharin molecules can adsorb to specific c-sites on the cobalt dense crystal plane,inhibiting the growth of abc stacking arrangement and inducing the crystal growth in ab stacking mode,thereby achieving optimal growth of HCP(002)texture. 展开更多
关键词 Electroless cobalt plating ADDITIVES SACCHARIN Crystallization behavior
在线阅读 下载PDF
High-performance supercapacitor based on 1D cobalt-based coordination polymer
9
作者 RONG Hongren GAO Gexiang +5 位作者 LIU Zhiwei ZHOU Ke SU Lixin HUANG Hao LIU Wenlong LIU Qi 《无机化学学报》 北大核心 2025年第6期1183-1195,共13页
A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal st... A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal structure was characterized.In a three-electrode system,Co-BD,as the electrode material for supercapacitors,achieved a specific capacitance of 830 F·g^(-1)at 1 A·g^(-1),equivalent to a specific capacity of 116.4 mAh·g^(-1),and exhibited high-rate capability,reaching 212 F·g^(-1)at 20 A·g^(-1).Impressively,Co-BD||rGO(reduced graphene oxide),representing an asymmetrical supercapacitor,owns a higher energy density of 14.2 Wh·kg^(-1)at 0.80 kW·kg^(-1),and an excellent cycle performance(After 4000 cycles at 1 A·g^(-1),the capacitance retention was up to 94%).CCDC:2418872. 展开更多
关键词 SUPERCAPACITOR cobalt compound coordination polymers crystal structure electrode materials electrochemical performances
在线阅读 下载PDF
Influence of Cobalte Octoate on Degree of Cure and Flexural Strength of an Unsaturated Polyester Resin
10
作者 R M Gengan K Moodley 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期749-,共1页
1 Introduction In the GRP (Glass fibre Reinforced Product) industry Cobalt Octoate is the promoter of choice for cross-linking unsaturated polyester (UPE) and styrene monomer.UPE's are often prepared to contain a ... 1 Introduction In the GRP (Glass fibre Reinforced Product) industry Cobalt Octoate is the promoter of choice for cross-linking unsaturated polyester (UPE) and styrene monomer.UPE's are often prepared to contain a concentration of 0.04%-0.05% of Cobalt ions so that faster cross-linking of the resin is achieved and ultimately faster manufacturing of the GRP component is achieved.These products sometimes fail prematurely after being manufactured and dispatched to the end user.The influence of Cobalt Octoat... 展开更多
关键词 cobalte octoate unsaturated polyester resin DSC
在线阅读 下载PDF
Heterogeneous Co-based catalytic systems for alkene hydroformylation
11
作者 Chao-an Liang Bo Zeng +6 位作者 Baolin Feng Huibing Shi Fengqi Zhang Jianhua Liu Lin He Yuxiao Ding Chungu Xia 《Chinese Journal of Catalysis》 2025年第3期115-141,共27页
Hydroformylation of olefins is one of the highest-volume industrial reactions to meet the vast demands for aldehydes as well as their derivatives.Homogeneous Co complexes were the original catalysts industrialized sin... Hydroformylation of olefins is one of the highest-volume industrial reactions to meet the vast demands for aldehydes as well as their derivatives.Homogeneous Co complexes were the original catalysts industrialized since 1960s.Heterogeneous catalysis is considered superior owing to the facile separation of catalysts from products,shorter technical process,and reduced manufacturing costs.Unexpectedly,there has not been a single case of plant using heterogenized Co-based catalyst successfully.To address the separation issue and understand the catalytic mechanism of the reactions,this review summarizes the progress in heterogeneous systems and provides a detailed discussion of their catalytic performance.Strategies for stabilizing Co species through support modification and additive incorporation are carefully considered to elucidate why heterogeneous systems have not yet succeeded on an industrial scale.Furthermore,we provide our insights for the development of heterogeneous catalytic hydroformylation,including the challenges,opportunities,and outlooks.The aim is to deepen the fundamental understanding of heterogeneous alkene hydroformylation,guiding the community's research efforts towards realizing its successful application in the future. 展开更多
关键词 Cobalt catalysts Alkene hydroformylation Heterogeneous catalysis Aldehyde derivatives Cobalt stabilization
在线阅读 下载PDF
Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane(9-BBN)borates
12
作者 Peng Guo Shicheng Dong +3 位作者 Xiang-Gui Zhang Bing-Bin Yang Jun Zhu Ke-Yin Ye 《Chinese Chemical Letters》 2025年第4期139-143,共5页
In most Suzuki–Miyaura carbon-carbon cross-coupling reactions,the borabicyclo[3.3.1]nonane scaffold(9-BBN)only serves as an auxiliary facilitating the transmetalation step and thus is transformed into by-products.The... In most Suzuki–Miyaura carbon-carbon cross-coupling reactions,the borabicyclo[3.3.1]nonane scaffold(9-BBN)only serves as an auxiliary facilitating the transmetalation step and thus is transformed into by-products.There are rare examples where the 9-BBN derivatives serve as the potentially diverse C8 building blocks in cross-coupling reactions.Herein,we report a cobalt-catalyzed migratory carboncarbon cross-coupling reaction of the in situ formed 9-BBN ate complexes to afford diverse aryl-and alkyl-functionalized cyclooctenes.Preliminary mechanistic studies suggest the oxidation-induced cisbicyclo[3.3.0]oct-1-ylborane is the key intermediate in this migratory cross-coupling reaction,which promotes the development of other diverse migratory cross-coupling of borate complexes. 展开更多
关键词 COBALT CROSS-COUPLING BORATE Rearrangement CYCLOOCTENE
原文传递
Effect of pH-dependent bath speciation on cobalt electrodeposition from sulfate-gluconate solutions
13
作者 Ewa RUDNIK 《Transactions of Nonferrous Metals Society of China》 2025年第7期2399-2420,共22页
pH-dependent multiple equilibria in cobalt sulfate-gluconate baths were calculated using stability constants adopted from literature.Changes of the bath speciation were then discussed in terms of spectrophotometric ex... pH-dependent multiple equilibria in cobalt sulfate-gluconate baths were calculated using stability constants adopted from literature.Changes of the bath speciation were then discussed in terms of spectrophotometric experiments and buffering properties of the solutions(pH 3-10).Cyclic voltammetry indicated changes in electrochemical behavior of cobalt species caused by different ionic compositions of the electrolytes.Tafel slopes were calculated and discussed in relation to electroreduction of cobalt species.Chronoamperometric studies showed 3D instantaneous nucleation of cobalt followed by diffusion-controlled growth,but it was disturbed at higher pH due to the release of cation from gluconate complexes as a limiting step.Diffusion coefficients of cobalt species were found.Changes in the pH were also reflected by modifications of morphology(SEM),development of preferred orientation planes(XRD,texture coefficients)and current efficiency,but not the thickness of the coatings deposited at constant potential of-1.0 V(vs Ag/AgCl).Anodic stripping analysis showed changes in anodic responses originated from the existence of preferentially oriented planes in cobalt layers. 展开更多
关键词 COBALT ELECTRODEPOSITION nucleation SPECIATION structure
在线阅读 下载PDF
Understanding the reaction-induced restructuring of CoO_(x) species in silicalite-1 to control selectivity in non-oxidative dehydrogenation of propane
14
作者 Qiyang Zhang Vita AKondratenko +8 位作者 Xiangnong Ding Jana Weiss Stephan Bartling Elizaveta Fedorova Dan Zhao Dmitry E.Doronkin Dongxu Wang Christoph Kubis Evgenii V.Kondratenko 《Chinese Journal of Catalysis》 2025年第7期108-119,共12页
Non-oxidative dehydrogenation of propane(PDH)is an important route for large-scale on purpose propene production.Although cobalt-based catalysts are promising alternatives to currently used platinum-or chromium oxide-... Non-oxidative dehydrogenation of propane(PDH)is an important route for large-scale on purpose propene production.Although cobalt-based catalysts are promising alternatives to currently used platinum-or chromium oxide-based catalysts,their further developments are hindered by the uncertainties related to the kind of the active sites involved in the desired and side reactions.To contribute to closing such a gap,we systematically investigate the role of oxidized CoO_(x) and metallic Co0 species in the PDH reaction over catalysts based in Silicalite-1 with supported CoO_(x) species differing in their redox properties.C_(3)H_(8) pulse experiments with sub-millisecond and second resolution at pulse sizes of about 13 and 2200 nmol,respectively,combined with in-depth catalyst characterization and PDH tests at different propane conversions enabled us to understand how the reaction-induced reduction of CoO_(x) affects product selectivity.Propane readily reacts with CoO_(x) to yield propene,carbon oxides and water.The formed Co0 species show high activity to coking and cracking reactions.However,if the size of such species is below 2 nm,these undesired reactions are significantly hindered due to the coverage of the active sites by carbon-containing species.The remaining uncovered surface Co0 sites selectively dehydrogenate propane to propene.The best-performing catalyst showed higher activity than a commercial-like K-CrOx/Al_(2)O_(3) and operated durable in a series of 10 dehydrogenation/regeneration cycles under industrial relevant conditions.The space time yield of propene formation of 0.97 kg·h^(-1)·kgcat^(-1) was achieved at 550℃,52%equilibrium propane conversion and 95% propene selectivity. 展开更多
关键词 PROPANE DEHYDROGENATION PROPENE Cobalt Mechanism
在线阅读 下载PDF
Asymmetric Nozaki-Hiyama-Kishi(NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis
15
作者 Jieshuai Xiao Yuan Zheng +2 位作者 Yue Zhao Zhuangzhi Shi Minyan Wang 《Chinese Chemical Letters》 2025年第5期243-251,共9页
The asymmetric addition of aromatic organometallic compounds to the carbonyl group(C-3)of isatins,catalyzed by transition metals,has emerged as a remarkably efficient method for the synthesis of chiral 3-hydroxyoxindo... The asymmetric addition of aromatic organometallic compounds to the carbonyl group(C-3)of isatins,catalyzed by transition metals,has emerged as a remarkably efficient method for the synthesis of chiral 3-hydroxyoxindoles.Here,an exceptionally enantioselective approach was developed for the first time to achieve a catalytic NHK reaction of isatins with aromatic halides(both aryl and heteroaryl).Utilizing chiral cobalt complexes as catalysts,and the presence of a diboron reagent B_(2)nep_(2)as both a reducing agent and determinant in enantiocontrol,has resulted in the triumphantly achieved synthesis of enantioenriched products.Compared to reported strategies,this approach exhibits remarkable compatibility with substrates bearing sensitive functional groups,such as halides and borate esters,while also eliminating the need for organometallic reagents as required in previous strategies.Through experimental investigations,the presence of aryl-cobalt species during the addition process was confirmed,rather than in-situ generation of an arylboron reagent.Furthermore,the successful attainment of the R absolute configuration through aryl addition was demonstrated. 展开更多
关键词 ENANTIOSELECTIVITY ISATIN Cobalt Addition DFT calculations
原文传递
Origin of misorientations for fcc→hcp transformation in pure cobalt and its in-situ validation
16
作者 Jin-jiang HE Guo-jin XU +4 位作者 Xing-quan WANG Jun-feng LUO Dan LIU Yong-jun LI Xin-fu GU 《Transactions of Nonferrous Metals Society of China》 2025年第5期1532-1542,共11页
The origin of the misorientations after fcc(face-centered cubic)to hcp(hexagonal close-packed)transformation in pure cobalt was elucidated by utilizing the electron backscatter diffraction(EBSD)technique and transform... The origin of the misorientations after fcc(face-centered cubic)to hcp(hexagonal close-packed)transformation in pure cobalt was elucidated by utilizing the electron backscatter diffraction(EBSD)technique and transformation crystallographic models.It is found the Shoji−Nishiyama orientation relationship during fcc→hcp transformation leads to four hcp variants,characterized by a common misorientation angle of 70.5°with respect to the<1120>direction,which is the predominant misorientation observed.Other statistically significant misorientation angles between hcp grains,including 32°,36°,38°,60°,71°and 86°−91°,are also identified.These newly observed misorientation angles are linked to the microstructure of the fcc matrix at elevated temperatures,with twin structures in the fcc matrix being the primary cause.Furthermore,a novel method is proposed for estimating the fraction of twins in the fcc grains based on misorientation angles between hcp variants,which is found to be consistent with experimental observations.In-situ EBSD observations validate the possible origin of fcc twins from the hcp→fcc transformation. 展开更多
关键词 COBALT transformation crystallography VARIANT orientation relationship twin
在线阅读 下载PDF
Investigation of surface effect in amorphous catalytic active layer for boosted water and seawater oxidation
17
作者 Xueqing Gao Yu Zhu +2 位作者 Shujiao Yang Wei Zhang Rui Cao 《Journal of Energy Chemistry》 2025年第4期393-399,共7页
Understanding the catalytic mechanism at real catalytically active layer is essential for the advancement of water oxidation.Nevertheless,it is difficult to explore the surface effect of active layer of catalysts on o... Understanding the catalytic mechanism at real catalytically active layer is essential for the advancement of water oxidation.Nevertheless,it is difficult to explore the surface effect of active layer of catalysts on oxygen evolution reaction(OER)independently because of the coexistence of bulk phase and surfaceactive layer.Herein,by designing ultra-thin shell amorphous CoO_(x)hollow nanospheres,we explored the effect of single catalytic active layer on OER activity,further revealing the surface catalytic mechanism for seawater oxidation.The amorphous catalytic active layer CoO_(x)contain phosphates(CoO_(x)PO_(4)),induced by completely bulk reconstruction of CoP_(x)hollow nanospheres.Compared with autologous crystalline CoO,amorphous catalytic active species CoO_(x)-PO_(4)possesses higher OER performance with ultralow overpotential of 229 mV to achieve 10 mA cm^(-2).Remarkably,self-built phosphate film could effectively block chloride anions and implement robust seawater oxidation.This work brings direct insights of the surface effect of amorphous catalytic active layer on water oxidation,which is critical for the performance optimization of water oxidation. 展开更多
关键词 Reconstruction Cobalt phosphide ELECTROCATALYSIS Seawater Water oxidation
在线阅读 下载PDF
Densely populated single-atom catalysts for boosting hydrogen generation from formic acid
18
作者 Xiaogeng Zhao Junmin Wang +6 位作者 Dongnuan Zhang Yunhui Hao Xingmian Zhang Junna Feng Hong Su Cheng Feng Chun Wang 《Carbon Energy》 2025年第1期64-75,共12页
The single-atom M-N-C(M typically being Co or Fe)is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy.However,the formation of metal nanoparticles in M-N-C materials is coup... The single-atom M-N-C(M typically being Co or Fe)is a prominent material with exceptional reactivity in areas of catalysis for sustainable energy.However,the formation of metal nanoparticles in M-N-C materials is coupled with hightemperature calcination conditions,limiting the density of M-Nx active sites and thus restricting the catalytic performance of such catalysts.Herein,we describe an effective decoupling strategy to construct high-density M-Nx active sites by generating polyfurfuryl alcohol in the MOF precursor,effectively preventing the formation of metal nanoparticles even with up to 6.377%cobalt loading.This catalyst showed a high H_(2) production rate of 778mLgcat^(−1) h^(−1) when used in the dehydrogenation reaction of formic acid.In addition to the high density of the active site,a curved carbon surface in the structure is also thought to be the reason for the high performance of the catalyst. 展开更多
关键词 COBALT DEHYDROGENATION formic acid polyfurfuryl alcohol single-atom catalyst
在线阅读 下载PDF
Unsaturated cobalt single-atoms stabilized by silanol nests of zeolites for efficient propane dehydrogenation
19
作者 Liwen Guo Dao Shi +4 位作者 Tianjun Zhang Yanhang Ma Guodong Qi Jun Xu Qiming Sun 《Chinese Journal of Catalysis》 2025年第5期323-333,共11页
Propane dehydrogenation(PDH)has emerged as a key on-purpose technology for the production of propylene,but it often depends on toxic chromium and expensive platinum catalysts,highlighting the need for environmentally ... Propane dehydrogenation(PDH)has emerged as a key on-purpose technology for the production of propylene,but it often depends on toxic chromium and expensive platinum catalysts,highlighting the need for environmentally friendly and cost-effective alternatives.In this study,we developed a facile impregnation method to fabricate unsaturated Co single-atoms with a tricoordinated Co_(1)O_(3)H_(x) structure by regulating silanol nests in purely siliceous Beta zeolites.Detailed PDH catalytic tests and characterizations revealed a positive correlation between the presence of silanol nests and enhanced catalytic activity.Additionally,the unsaturated Co single-atoms exhibited a carbon deposition rate more than an order of magnitude slower than that of Co nanoparticles.Notably,the optimized Co_(0.3%)/deAl-meso-Beta catalyst achieved a record-high propylene formation rate of 21.2 mmol_(C3H6) g_(cat)^(-1) h^(-1),with an exceptional propylene selectivity of 99.1%at 550℃.Moreover,the Co_(0.3%)/deAl-meso-Beta catalyst demonstrated excellent stability,with negligible deactivation after 5 consecutive regeneration cycles.This study emphasizes the pivotal role of silanol nests of zeolites in stabilizing and modulating the coordination environment of metallic active sites,providing valuable insights for the design of high-activity,high-stability,and low-cost PDH catalysts. 展开更多
关键词 Propane dehydrogenation Unsaturated cobalt Single-atoms Silanol nest Zeolite
在线阅读 下载PDF
Anionic electron dimensionality and monolayer ferromagnetism in Y-Co electrides
20
作者 Lu Zheng Zimeng Lv +8 位作者 Xiaochen Huang Zhuangfei Zhang Chao Fang Yuewen Zhang Qianqian Wang Liangchao Chen Xiaopeng Jia Biao Wan Huiyang Gou 《Chinese Physics B》 2025年第9期482-488,共7页
Electrides,characterized by spatially confined anionic electrons,have emerged as a promising class of materials for catalysis,magnetism,and superconductivity.However,transition-metal-based electrides with diverse elec... Electrides,characterized by spatially confined anionic electrons,have emerged as a promising class of materials for catalysis,magnetism,and superconductivity.However,transition-metal-based electrides with diverse electron dimensionalities remain largely unexplored.Here,we perform a comprehensive first-principles investigation of Y-Co electrides,focusing on Y_(3)Co,Y_(3)Co_(2),and YCo.Our calculations reveal a striking dimensional evolution of anionic electrons:from two-dimensional(2D)confinement in YCo to one-dimensional(1D)in Y_(3)Co_(2)and zero-dimensional(0D)in Y_(3)Co.Remarkably,the YCo monolayer exhibits intrinsic ferromagnetism,with a magnetic moment of 0.65μB per formula unit arising from spin-polarized anionic electrons mediating long-range coupling between Y and Co ions.The monolayer also shows a low exfoliation energy(1.66 J/m^(2)),indicating experimental feasibility.All three electrides exhibit low work functions(2.76 eV-3.11 eV)along with Co-centered anionic states.This work expands the family of transition-metal-based electrides and highlights dimensionality engineering as a powerful strategy for tuning electronic and magnetic properties. 展开更多
关键词 ELECTRIDES cobalt anions work function magnestism
原文传递
上一页 1 2 66 下一页 到第
使用帮助 返回顶部