Air plasma sprayed thermal barrier coatings(APS-TBCs)saw their wide application in high-temperaturerelated cutting-edge fields.The lamellar structure of APS-TBCs provides a significant advantage on thermal insulation....Air plasma sprayed thermal barrier coatings(APS-TBCs)saw their wide application in high-temperaturerelated cutting-edge fields.The lamellar structure of APS-TBCs provides a significant advantage on thermal insulation.However,short life span is a major headache for APS-TBCs.This is highly related to the property changes and passive behaviors of the coatings during thermal service.Herein,a finite element model was developed to investigate the dynamic stiffening and substrate constraint on total spallation process.Results show that the stiffening accelerates the crack propagation of APS-TBCs.The driving force for crack propagation,which is characterized by strain energy release rate(SERR),is significantly enlarged.Consequently,the crack starts to propagate when the SERR exceeds the fracture toughness.In addition,the changing trends of SERR and crack propagation features are highly associated with temperatures.A higher temperature corresponds to more significant effect of stiffening on substrate constraint.In brief,temperature-dependent stiffening significantly aggravates the substrate constraint effect on APS-TBCs,which is one of the major causes for the spallation.Given that,lowering stiffening degree is essential to maintain high strain tolerance,and to further extend the life span of APS-TBCs.This understanding contributes to the development of advanced TBCs in future applications.展开更多
Laser etching and laser chemical vapor deposition(LCVD)techniques were proposed for the rapid preparation of high-purity,strongly bonded SiC porous micro-nano-coatings on quartz substrates.The laser serves as an exter...Laser etching and laser chemical vapor deposition(LCVD)techniques were proposed for the rapid preparation of high-purity,strongly bonded SiC porous micro-nano-coatings on quartz substrates.The laser serves as an external driving force for the vertical growth of SiC whiskers,facilitating the formation of a porous nanostructure that resembles coral models found in the macroscopic biological world.The porous nanostructures are beneficial for reducing thermal expansion mismatch and relieving residual stress.It is capable of eliminating the cracks on the surface of SiC coatings as well as enhancing the bonding of SiC coatings with quartz substrates to avoid coating detachment.展开更多
Developing high-efficient flame-retardant coatings is crucial for fire safety polymer and battery fields.Traditional intumescent coatings and ceramifiable coatings struggle to provide immediate and prolonged protectio...Developing high-efficient flame-retardant coatings is crucial for fire safety polymer and battery fields.Traditional intumescent coatings and ceramifiable coatings struggle to provide immediate and prolonged protection simultaneously,which limits the applicability.To address this,an innovative bi-layered coating with organic/nano-inorganic additives is inspired by differential response behaviors,enabling relay response effect with both fast-acting and extended protection.Specifically,two layers function continuously in the form of a relay.With a mere 320 microns,the bi-layered coating withstands fire temperatures of up to 1400℃for at least 900 s.Consequently,the coating effective prevented burn through in aluminum plates and glass fabric-reinforced epoxy resin,which otherwise were burned through in 135 and 173 s,respectively.Meanwhile,the bi-layered coating suppressed the formation and decomposition of solid interface layer in lithium soft-package batteries,leading to prolonged electrochemical stability and fire safety.Additionally,the bi-layered coating with a fast response endows polyurethane foam with rapid self-extinguishing,preventing ignition even under exposure to strong fire of 1400℃.Shortly,our work offers new insights into the design and development of thin,high-performance,and multi-application flame-retardant coatings.展开更多
Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffracti...Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
The propagation characteristics of laser-generated like-Rayleigh waves in viscoelastic adhesive coating/substrate structures were studied.Considering the viscoelasticity of the coating and substrate,we have establishe...The propagation characteristics of laser-generated like-Rayleigh waves in viscoelastic adhesive coating/substrate structures were studied.Considering the viscoelasticity of the coating and substrate,we have established the finite element models in frequency domain for the laser-generated like-Rayleigh waves in the epoxy coating/aluminum substrate,epoxy coating/brass substrate,and epoxy coating/foam substrate structures,respectively.In addition,we have investigated the waveform and propagation characteristics of the like-Rayleigh waves and studied the influences of the coating transparency,coating thickness,coating viscoelasticity,and substrate viscoelasticity on the propagation characteristics of the like-Rayleigh waves.Moreover,we have verified the results by the theoretical phase velocity and attenuation curves.The results show that the coating viscoelasticity induces the attenuation characteristics of the higher frequencies of the like-Rayleigh waves,but has little effect on the lower frequencies,and the substrate viscoelasticity has the influences on both the higher and lower frequencies of the like-Rayleigh waves,especially the lower frequencies.Furthermore,the mode and dispersive characteristics of the like-Rayleigh waves are closely related to the substrates.This study provides a useful theoretical basis for inverting mechanical parameters and evaluating the adhesive quality of the viscoelastic adhesive coating/substrate structures.展开更多
Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-s...Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipol...Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.展开更多
Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings ...Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate.The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation.Despite this,there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation.The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate,under the combined effects of biomass co-smoldering pyrolysis and plant colonization.The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects,which enhance the physical and chemical properties of tailings,while simultaneously accelerating the rate of mineral weathering.Notable improvements include the amelioration of extreme pH levels,nutrient enrichment,the formation of aggregates,and an increase in enzyme activity,all of which collectively demonstrate the successful attainment of tailings substrate reconstruction.Evidence of the acceleratedweathering was verified by phase and surfacemorphology analysis using X-ray diffraction and scanning electron microscopy.Discovered corrosion and fragmentation on the surface ofminerals.The weathering resulted in corrosion and fragmentation of the surface of the treated mineral.This study confirms that co-smoldering pyrolysis of biomass,combined with plant colonization,can effectively promote the transformation of tailings into soil-like substrates.This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and fr...Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and friction behavior of diamond coatings can impede their ability to meet the demanding requirements of advanced engineering surfaces.This study proposed the thermal stress control at coating interfaces and demonstrated a novel process of precise graphenization on conventional diamond coatings surface through laser induction and mechanical cleavage,without causing damage to the metal substrate.Through experiments and simulations,the influence mechanism of surface graphitization and interfacial thermal stress was elucidated,ultimately enabling rapid conversion of the diamond coating surface to graphene while controlling the coating’s thickness and roughness.Compared to the original diamond coatings,the obtained surfaces exhibited a 63%-72%reduction in friction coefficients,all of which were below 0.1,with a minimum of 0.06,and a 59%-67%decrease in specific wear rates.Moreover,adhesive wear in the friction counterpart was significantly inhibited,resulting in a reduction in wear by 49%-83%.This demonstrated a significant improvement in lubrication and inhibition of mechanochemical wear properties.This study provides an effective and cost-efficient avenue to overcome the application bottleneck of engineered diamond surfaces,with the potential to significantly enhance the performance and expand the application range of diamond-coated components.展开更多
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitatio...Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial.展开更多
We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperatu...We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperature(relative to hydrothermal reaction conditions)under atmospheric pressure and an outer polysiloxane layer created from a solution containing perfluorodecyltrimethoxysilane(PFDTMS)using a simple immersion method.The successful intercalation of tungstate into the LDH phase and the following formation of the polysiloxane layer were confirmed through X-ray diffraction(XRD),Fourier transform infrared(FTIR)spectroscopy,and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the LDH-W film,both before and after the PFDTMS modification,was evaluated using electrochemical impedance spectroscopy(EIS),Tafel curves,and immersion experiments.The results showed that Mg coated with LDH-W/PFDTMS exhibited significantly enhanced corrosion protection compared to the unmodified LDHW film,with no apparent signs of corrosion after exposure to 3.5wt%NaCl solution for 15 d.Furthermore,the LDH-W/PFDTMS coating demonstrated superior superhydrophobicity and self-cleaning properties against water and several common beverages,as confirmed by static contact angle and water-repellency tests.These results offer valuable insights into preparing superhydrophobic and corrosion-resistant LDH-based composite coatings on Mg alloy surfaces under relatively mild reaction conditions.展开更多
Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor ...Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor due to the deficiency of oxygen-consuming phases,as well as the self-healing ability of the protective layer.Herein,a silicide-based composite coating is constructed on niobium alloy by incor-poration of nano-SiC particles for enhancing the high-temperature oxidation resistance.Isothermal oxi-dation results at 1250℃ for 50 h indicate that NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multilayer coated sample with a low mass gain of 2.49 mg/cm^(2) shows an improved oxidation resistance compared with NbSi_(2) coating(6.49 mg/cm^(2)).The enhanced high-temperature antioxidant performance of NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multi-layer coating is mainly attributed to the formation of the protective SiO_(2) self-healing film and the high-temperature diffusion behavior of NbSi_(2)/substrate.展开更多
Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates...Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.展开更多
Mg and its alloys show high potential to be applied as implant materials due to their superior properties like biodegradability,bioactivity,biocompatibility,and suitable mechanical behaviors.Nevertheless,the fast and ...Mg and its alloys show high potential to be applied as implant materials due to their superior properties like biodegradability,bioactivity,biocompatibility,and suitable mechanical behaviors.Nevertheless,the fast and uncontrolled degradation of Mg alloys in biological environment severely restricts their wide applications as biomedical materials.In comparison with alloying,surface coatings can not only improve corrosion resistance but also impart other bio-functional properties to achieve diverse clinical requirements.This review analyzes and summarizes the most recent developments in popular coating technologies,including micro-arc oxidation,electrophoretic deposition,chemical conversion,anodic oxidation,layered double hydroxide,and sol-gel coatings.Considering inevitable damages under complex service conditions,smart self-healing coatings are also introduced in each coating technology.The existing issues and future perspectives are finally discussed to facilitate applications of Mg alloys as biomedical materials in the medical industry.展开更多
A Cr/CoNiCrAlTaY bilayer coating was prepared on the Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique.The as-prepared coating with a grain size of~2μm exhibited a dense microstructure and strong adhesion du...A Cr/CoNiCrAlTaY bilayer coating was prepared on the Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique.The as-prepared coating with a grain size of~2μm exhibited a dense microstructure and strong adhesion due to metallurgical bonding,consisting of outermost Cr layer and CoNiCrAlTaY transition layer.The typical power-law relationship between mass gain and time was obtained for the coated specimens with a rate exponent of 3.18 following oxidation at 1173 K.The top Cr_(2)O_(3)film and spinel oxides(i.e.,NiCr_(2)O_(4)and CoCr_(2)O_(4))exhibited a protective effect with a low oxidation reaction rate.Interfacial analysis identified Ta precipitates(Cr_(2)Ta and TaAl_(3))and Ta oxides(Ta_(2)O_(5)and Ta_(2)O_(3)),which played an essential role in retarding rapid diffusion and enhancing adhesion and oxidation resistance.展开更多
Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes...Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes during repeated charge–discharge cycles. In this work, a “soft-hard”double-layer coating has been proposed and carried out on ball-milled silicon particles. It is composed of inside conductive pathway and outside elastic coating, which is achieved by decomposing a conductive graphite layer on the silicon surface and further coating it with a polymer layer.The incorporation of the second elastic coating on the inside carbon coating enables silicon particles strongly interacted with binders, thereby making the electrodes displaying an obviously improved cycling stability. As-obtained double-coated silicon anodes deliver a reversible capacity of 2280 m Ah g^(-1)at the voltage of 0.05–2 V, and maintains over 1763 mAh g^(-1)after 50 cycles. The double-layer coating does not crack after the repeated cycling, critical for the robust performance of the electrodes. In addition, as-obtained silicon particles are mixed with commercial graphite to make actual anodes for lithium-ion batteries. A capacity of 714 mAh g^(-1)has been achieved based on the total mass of the electrodes containing 10 wt.% double-coated silicon particles. Compared with traditional carbon coating or polymeric coating, the double-coating electrodes display a much better performance. Therefore, the double-coating strategy can give inspiration for better design and synthesis of silicon anodes, as well as other battery materials.展开更多
基金financially supported by the National Science and Technology Major Project(2017-VII-0012-0107)the China Postdoctoral Science Foundation(Nos.2019T120903 and 2018M631151)+5 种基金the Natural Science Foundation of Shaanxi Province(No.2019JQ-165)the Domain Foundation of Equipment Advance Research of 13th Five-year Plan(No.JZX7Y20190262062001)the Postdoctoral Science Foundation of Shaanxi Province(No.2018BSHYDZZ59)the opening foundation from Science and Technology on Plasma Dynamics Laboratory in Air Force Engineering University of China(No.61422020701)the Young Talent fund of University Association for Science and Technology in Shaanxi,China(No.20190403)The financial support from China Scholarship Council(CSC)to be a postdoctoral researcher in Forschungszentrum Jülich would be greatly appreciated by Dr.G.R.Li(No.201806285079)。
文摘Air plasma sprayed thermal barrier coatings(APS-TBCs)saw their wide application in high-temperaturerelated cutting-edge fields.The lamellar structure of APS-TBCs provides a significant advantage on thermal insulation.However,short life span is a major headache for APS-TBCs.This is highly related to the property changes and passive behaviors of the coatings during thermal service.Herein,a finite element model was developed to investigate the dynamic stiffening and substrate constraint on total spallation process.Results show that the stiffening accelerates the crack propagation of APS-TBCs.The driving force for crack propagation,which is characterized by strain energy release rate(SERR),is significantly enlarged.Consequently,the crack starts to propagate when the SERR exceeds the fracture toughness.In addition,the changing trends of SERR and crack propagation features are highly associated with temperatures.A higher temperature corresponds to more significant effect of stiffening on substrate constraint.In brief,temperature-dependent stiffening significantly aggravates the substrate constraint effect on APS-TBCs,which is one of the major causes for the spallation.Given that,lowering stiffening degree is essential to maintain high strain tolerance,and to further extend the life span of APS-TBCs.This understanding contributes to the development of advanced TBCs in future applications.
基金Funded by the International Science&Technology Cooperation Program of Hubei Province of China(No.2022EHB024)the National Key Research and Development Plan(Nos.2018YFE0103600 and 2021YFB3703100)+1 种基金the National Natural Science Foundation of China(Nos.51872212,51972244,52002075,and 52102066)the 111 Project(No.B13035)。
文摘Laser etching and laser chemical vapor deposition(LCVD)techniques were proposed for the rapid preparation of high-purity,strongly bonded SiC porous micro-nano-coatings on quartz substrates.The laser serves as an external driving force for the vertical growth of SiC whiskers,facilitating the formation of a porous nanostructure that resembles coral models found in the macroscopic biological world.The porous nanostructures are beneficial for reducing thermal expansion mismatch and relieving residual stress.It is capable of eliminating the cracks on the surface of SiC coatings as well as enhancing the bonding of SiC coatings with quartz substrates to avoid coating detachment.
基金the support by the National Natural Science Foundation of China(grant numbers 52273048 and 51973006)the Beijing Natural Science Foundation of China(grant number 2222052)the financial support of this work by BIOFIRESAFE(PID2020-117274RB-I00)funded by MINECO,Spain。
文摘Developing high-efficient flame-retardant coatings is crucial for fire safety polymer and battery fields.Traditional intumescent coatings and ceramifiable coatings struggle to provide immediate and prolonged protection simultaneously,which limits the applicability.To address this,an innovative bi-layered coating with organic/nano-inorganic additives is inspired by differential response behaviors,enabling relay response effect with both fast-acting and extended protection.Specifically,two layers function continuously in the form of a relay.With a mere 320 microns,the bi-layered coating withstands fire temperatures of up to 1400℃for at least 900 s.Consequently,the coating effective prevented burn through in aluminum plates and glass fabric-reinforced epoxy resin,which otherwise were burned through in 135 and 173 s,respectively.Meanwhile,the bi-layered coating suppressed the formation and decomposition of solid interface layer in lithium soft-package batteries,leading to prolonged electrochemical stability and fire safety.Additionally,the bi-layered coating with a fast response endows polyurethane foam with rapid self-extinguishing,preventing ignition even under exposure to strong fire of 1400℃.Shortly,our work offers new insights into the design and development of thin,high-performance,and multi-application flame-retardant coatings.
基金Project (51045004) supported by the National Natural Science Foundation of ChinaProject (2006AA03A219) supported by Hi-tech Research and Development Program of ChinaProject (YYYJ-0913) supported by Knowledge Innovation Project in Chinese Academy of Sciences
文摘Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金supported by National Basic Research Program of China(2012CB921504)Major Program of National Natural Science Foundation of China(51239005)+4 种基金National Natural Science Foundation of China(11404147,11174142)Natural Science Foundation of Jiangsu Province(BK20140519)China Postdoctoral Science Foundation(2015M571672)Research Fund for Advanced Talents of Jiangsu University(11JDG118)Training Project of Young Backbone Teachers of Jiangsu University
文摘The propagation characteristics of laser-generated like-Rayleigh waves in viscoelastic adhesive coating/substrate structures were studied.Considering the viscoelasticity of the coating and substrate,we have established the finite element models in frequency domain for the laser-generated like-Rayleigh waves in the epoxy coating/aluminum substrate,epoxy coating/brass substrate,and epoxy coating/foam substrate structures,respectively.In addition,we have investigated the waveform and propagation characteristics of the like-Rayleigh waves and studied the influences of the coating transparency,coating thickness,coating viscoelasticity,and substrate viscoelasticity on the propagation characteristics of the like-Rayleigh waves.Moreover,we have verified the results by the theoretical phase velocity and attenuation curves.The results show that the coating viscoelasticity induces the attenuation characteristics of the higher frequencies of the like-Rayleigh waves,but has little effect on the lower frequencies,and the substrate viscoelasticity has the influences on both the higher and lower frequencies of the like-Rayleigh waves,especially the lower frequencies.Furthermore,the mode and dispersive characteristics of the like-Rayleigh waves are closely related to the substrates.This study provides a useful theoretical basis for inverting mechanical parameters and evaluating the adhesive quality of the viscoelastic adhesive coating/substrate structures.
基金Project(2011B050400007)supported by the International Cooperation Program of Guangdong Province,China
文摘Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金supported by the National Key Re-search and Development Program of China(No.2022YFB4002100)the National Natural Science Foundation of China(No.52271136)the Natural Science Foundation of Shaanxi Province(Nos.2019TD-020 and 2021JC-06).
文摘Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.
基金supported by the National Natural Science Foundation of China(No.52060011).
文摘Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate.The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation.Despite this,there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation.The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate,under the combined effects of biomass co-smoldering pyrolysis and plant colonization.The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects,which enhance the physical and chemical properties of tailings,while simultaneously accelerating the rate of mineral weathering.Notable improvements include the amelioration of extreme pH levels,nutrient enrichment,the formation of aggregates,and an increase in enzyme activity,all of which collectively demonstrate the successful attainment of tailings substrate reconstruction.Evidence of the acceleratedweathering was verified by phase and surfacemorphology analysis using X-ray diffraction and scanning electron microscopy.Discovered corrosion and fragmentation on the surface ofminerals.The weathering resulted in corrosion and fragmentation of the surface of the treated mineral.This study confirms that co-smoldering pyrolysis of biomass,combined with plant colonization,can effectively promote the transformation of tailings into soil-like substrates.This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金support from the National Natural Science Foundation of China(NSFC)[No.52475464,52475463]National Natural Science Foundation of Jiangsu Province(No.BK20231442)+4 种基金the Fundamental Research Funds for the Central Universities(No.NS2024032)the International Joint Laboratory of Sustainable Manufacturing,Ministry of Education and the Fundamental Research Funds for the Central Universities(No.NG2024007)China Scholarship Council(No.202206830048)the Foundation of the Graduate Innovation Center,Nanjing University of Aeronautics and Astronautics(No.kfjj20200510)Funding for Outstanding Doctoral Dissertation in NUAA(No.BCXJ23-09)。
文摘Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and friction behavior of diamond coatings can impede their ability to meet the demanding requirements of advanced engineering surfaces.This study proposed the thermal stress control at coating interfaces and demonstrated a novel process of precise graphenization on conventional diamond coatings surface through laser induction and mechanical cleavage,without causing damage to the metal substrate.Through experiments and simulations,the influence mechanism of surface graphitization and interfacial thermal stress was elucidated,ultimately enabling rapid conversion of the diamond coating surface to graphene while controlling the coating’s thickness and roughness.Compared to the original diamond coatings,the obtained surfaces exhibited a 63%-72%reduction in friction coefficients,all of which were below 0.1,with a minimum of 0.06,and a 59%-67%decrease in specific wear rates.Moreover,adhesive wear in the friction counterpart was significantly inhibited,resulting in a reduction in wear by 49%-83%.This demonstrated a significant improvement in lubrication and inhibition of mechanochemical wear properties.This study provides an effective and cost-efficient avenue to overcome the application bottleneck of engineered diamond surfaces,with the potential to significantly enhance the performance and expand the application range of diamond-coated components.
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
基金supported by the National Natural Science Foundation of China(Nos.52003148 and 52261045)the State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University(No.MRUKF2021023)+3 种基金the Key Research and Development Project of Shaanxi Province(No.2023-YBGY-475)the Key Scientific Research Project of Education Department of Shaanxi Province(No.22JS003)the Industrialization Project of the State Key Laboratory of Biological Resources and Ecological Environment(Cultivation)of Qinba Region(No.SXC-2310)the key cultivation project funds of Shaanxi University of Technology(No.SLGKYXM2201).
文摘Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial.
基金supported by the National Natural Science Foundation of China(No.52271073)the Sichuan Provincial Natural Science Foundation for Distinguished Young Scholars,China(No.2024NSFJQ0034)the Innovation Team Funds of China West Normal University(No.KCXTD2024-1)。
文摘We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperature(relative to hydrothermal reaction conditions)under atmospheric pressure and an outer polysiloxane layer created from a solution containing perfluorodecyltrimethoxysilane(PFDTMS)using a simple immersion method.The successful intercalation of tungstate into the LDH phase and the following formation of the polysiloxane layer were confirmed through X-ray diffraction(XRD),Fourier transform infrared(FTIR)spectroscopy,and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the LDH-W film,both before and after the PFDTMS modification,was evaluated using electrochemical impedance spectroscopy(EIS),Tafel curves,and immersion experiments.The results showed that Mg coated with LDH-W/PFDTMS exhibited significantly enhanced corrosion protection compared to the unmodified LDHW film,with no apparent signs of corrosion after exposure to 3.5wt%NaCl solution for 15 d.Furthermore,the LDH-W/PFDTMS coating demonstrated superior superhydrophobicity and self-cleaning properties against water and several common beverages,as confirmed by static contact angle and water-repellency tests.These results offer valuable insights into preparing superhydrophobic and corrosion-resistant LDH-based composite coatings on Mg alloy surfaces under relatively mild reaction conditions.
基金supported by the National Natural Science Foundation of China(Nos.U21B2053,52071114,52001100,and 523B2010)Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province(No.YQ2023E008)+1 种基金Young Elite Scientists Sponsorship Program by CAST(NO.2021QNRC001)Heilongjiang Touyan Team Program.
文摘Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor due to the deficiency of oxygen-consuming phases,as well as the self-healing ability of the protective layer.Herein,a silicide-based composite coating is constructed on niobium alloy by incor-poration of nano-SiC particles for enhancing the high-temperature oxidation resistance.Isothermal oxi-dation results at 1250℃ for 50 h indicate that NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multilayer coated sample with a low mass gain of 2.49 mg/cm^(2) shows an improved oxidation resistance compared with NbSi_(2) coating(6.49 mg/cm^(2)).The enhanced high-temperature antioxidant performance of NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multi-layer coating is mainly attributed to the formation of the protective SiO_(2) self-healing film and the high-temperature diffusion behavior of NbSi_(2)/substrate.
基金supported by the National Natural Science Foundation of China(No.52001034)the China Postdoctoral Science Foundation(No.2023M731677)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_3032).
文摘Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.
基金supported by the Chongqing Natural Science Foundation(No.CSTB2023NSCQ-MSX0512)Municipal Human Resources and Social Security Bureau(No.cx2022098)China Postdoctoral Science Foundation(Nos.2022T150767 and 2021M693708).
文摘Mg and its alloys show high potential to be applied as implant materials due to their superior properties like biodegradability,bioactivity,biocompatibility,and suitable mechanical behaviors.Nevertheless,the fast and uncontrolled degradation of Mg alloys in biological environment severely restricts their wide applications as biomedical materials.In comparison with alloying,surface coatings can not only improve corrosion resistance but also impart other bio-functional properties to achieve diverse clinical requirements.This review analyzes and summarizes the most recent developments in popular coating technologies,including micro-arc oxidation,electrophoretic deposition,chemical conversion,anodic oxidation,layered double hydroxide,and sol-gel coatings.Considering inevitable damages under complex service conditions,smart self-healing coatings are also introduced in each coating technology.The existing issues and future perspectives are finally discussed to facilitate applications of Mg alloys as biomedical materials in the medical industry.
基金financial supports from Shanxi Provincial Natural Science Foundation,China(No.20210302123162)Shanxi Scholarship Council of China(No.2024-057)+2 种基金State Key Laboratory of Advanced Metal Materials,China(No.2019-ZD02)Science and Technology Achievement Transformation and Cultivation Project of Shanxi,China(No.2020CG011)Shanxi“1331 Project”Quality Improvement and Efficiency Project,China。
文摘A Cr/CoNiCrAlTaY bilayer coating was prepared on the Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique.The as-prepared coating with a grain size of~2μm exhibited a dense microstructure and strong adhesion due to metallurgical bonding,consisting of outermost Cr layer and CoNiCrAlTaY transition layer.The typical power-law relationship between mass gain and time was obtained for the coated specimens with a rate exponent of 3.18 following oxidation at 1173 K.The top Cr_(2)O_(3)film and spinel oxides(i.e.,NiCr_(2)O_(4)and CoCr_(2)O_(4))exhibited a protective effect with a low oxidation reaction rate.Interfacial analysis identified Ta precipitates(Cr_(2)Ta and TaAl_(3))and Ta oxides(Ta_(2)O_(5)and Ta_(2)O_(3)),which played an essential role in retarding rapid diffusion and enhancing adhesion and oxidation resistance.
基金supported by the National Natural Science Foundation of China (No. 22008256)。
文摘Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes during repeated charge–discharge cycles. In this work, a “soft-hard”double-layer coating has been proposed and carried out on ball-milled silicon particles. It is composed of inside conductive pathway and outside elastic coating, which is achieved by decomposing a conductive graphite layer on the silicon surface and further coating it with a polymer layer.The incorporation of the second elastic coating on the inside carbon coating enables silicon particles strongly interacted with binders, thereby making the electrodes displaying an obviously improved cycling stability. As-obtained double-coated silicon anodes deliver a reversible capacity of 2280 m Ah g^(-1)at the voltage of 0.05–2 V, and maintains over 1763 mAh g^(-1)after 50 cycles. The double-layer coating does not crack after the repeated cycling, critical for the robust performance of the electrodes. In addition, as-obtained silicon particles are mixed with commercial graphite to make actual anodes for lithium-ion batteries. A capacity of 714 mAh g^(-1)has been achieved based on the total mass of the electrodes containing 10 wt.% double-coated silicon particles. Compared with traditional carbon coating or polymeric coating, the double-coating electrodes display a much better performance. Therefore, the double-coating strategy can give inspiration for better design and synthesis of silicon anodes, as well as other battery materials.