期刊文献+
共找到776,937篇文章
< 1 2 250 >
每页显示 20 50 100
Protein aging dynamics:A perspective from non-equilibrium coarse-grained models
1
作者 Yue Shan Chun-Lai Ren Yu-Qiang Ma 《Chinese Physics B》 2025年第5期609-617,共9页
The aging of biomolecular condensates has been implicated in the pathogenesis of various neurodegenerative diseases,characterized by a transition from a physiologically liquid-like state to a pathologically ordered st... The aging of biomolecular condensates has been implicated in the pathogenesis of various neurodegenerative diseases,characterized by a transition from a physiologically liquid-like state to a pathologically ordered structure.However,the mechanisms governing the formation of these pathological aggregates remain poorly understood.To address this,the present study utilizes coarse-grained molecular dynamics simulations based on Langevin dynamics to explore the structural,dynamical,and material property changes of protein condensates during the aging process.Here,we further develop a nonequilibrium simulation algorithm that not only captures the characteristics of time-dependent amount of aging beads but also reflects the structural information of chain-like connections between aging beads.Our findings reveal that aging induces compaction of the condensates,accompanied by a decrease in diffusion rates and an increase in viscosity.Further analysis suggests that the heterogeneous diffusivity within the condensates may drive the aging process to initiate preferentially at the condensate surface.Our simulation results align with the experimental phenomena and provide a clear physical picture of the aging dynamics. 展开更多
关键词 protein condensates aging coarse-grained simulation liquid-to-solid transition
原文传递
Darcy to non-Darcy seepage transition in heterogeneous coarse-grained soil:Seepage characteristics and critical threshold prediction
2
作者 Xin Zhang Yufeng Wei +3 位作者 Guoxiang Tu Hao Yang Shixin Zhang Peng Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2526-2538,共13页
Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to t... Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to the complexity of pore structure in heterogeneous coarse-grained soil,identifying the critical threshold for the transition from Darcy to non-Darcy seepage is challenging.This paper introduces equivalent particle size(dep)and relative roughness(λt)as indirect indicators reflecting the pore characteristics,quantifying the complex pore structure of heterogeneous coarse-grained soil.The formulae for the derivation of Reynolds number and resistance coefficient for heterogeneous coarse-grained soil are presented.By conducting permeability tests on coarse-grained soils with different pore structures,the effect of particle composition heterogeneity on seepage characteristics was analyzed.The flow regime of heterogeneous coarse-grained soil is divided into laminar,transitional,and turbulent stages based on the relationship between Reynolds number and resistance coefficient.The energy loss patterns in each stage are closely related to pore structure.By setting the permeability ratio k∗=0.95 as the critical threshold for the transition from Darcy to non-Darcy seepage,a method for calculating the critical Reynolds number(Recr)for heterogeneous coarse-grained soil is proposed.Furthermore,we applied this method to other published laboratory data,analyzing the differences in the critical threshold for seepage transition between homogeneous and heterogeneous coarse-grained soil.This study aims to propose a more accurate and general criterion for the transition from Darcy to non-Darcy seepage in heterogeneous coarse-grained soil. 展开更多
关键词 coarse-grained soil Porous media Seepage characteristics Non-Darcy seepage Pore characteristics
在线阅读 下载PDF
Microscopic swelling behaviors and structural responses of aggregate system: A coarse-grained molecular dynamics study
3
作者 Kaiwen Tong Jean-Michel Pereira +4 位作者 Fei Yu Jianhua Guo Zihang Liu Zhangjun Dai Shanxiong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3833-3844,共12页
To overcome the limitations of microscale experimental techniques and molecular dynamics(MD)simulations,a coarse-grained molecular dynamics(CGMD)method was used to simulate the wetting processes of clay aggregates.Bas... To overcome the limitations of microscale experimental techniques and molecular dynamics(MD)simulations,a coarse-grained molecular dynamics(CGMD)method was used to simulate the wetting processes of clay aggregates.Based on the evolution of swelling stress,final dry density,water distribution,and clay arrangements under different target water contents and dry densities,a relationship between the swelling behaviors and microstructures was established.The simulated results showed that when the clay-water well depth was 300 kcal/mol,the basal spacing from CGMD was consistent with the X-ray diffraction(XRD)data.The effect of initial dry density on swelling stress was more pronounced than that of water content.The anisotropic swelling characteristics of the aggregates are related to the proportion of horizontally oriented clay mineral layers.The swelling stress was found to depend on the distribution of tactoids at the microscopic level.At lower initial dry density,the distribution of tactoids was mainly controlled by water distribution.With increase in the bound water content,the basal spacing expanded,and the swelling stresses increased.Free water dominated at higher water contents,and the particles were easily rotated,leading to a decrease in the number of large tactoids.At higher dry densities,the distances between the clay mineral layers decreased,and the movement was limited.When bound water enters the interlayers,there is a significant increase in interparticle repulsive forces,resulting in a greater number of small-sized tactoids.Eventually,a well-defined logarithmic relationship was observed between the swelling stress and the total number of tactoids.These findings contribute to a better understanding of coupled macro-micro swelling behaviors of montmorillonite-based materials,filling a study gap in clay-water interactions on a micro scale. 展开更多
关键词 coarse-grained molecular dynamics (CGMD) Clay aggregates Swelling stress Water distribution Distribution of tactoids
在线阅读 下载PDF
Effect of Al content on nanoprecipitates, austenite grain growth and toughness in coarse-grained heat-affected zones of Al–Ti–Ca deoxidized shipbuilding steels
4
作者 Tingting Li Jian Yang +3 位作者 Yinhui Zhang Han Sun Yanli Chen Yuqi Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期879-891,共13页
This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two exp... This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃. 展开更多
关键词 oxide metallurgy Al–Ti–Ca deoxidization Al content PRECIPITATES coarse-grained heat-affected zone
在线阅读 下载PDF
Characterization of unsaturated coarse-grained railway embankment fill:Water retention and dilatancy
5
作者 Yuanjie Xiao Wenqi Li +4 位作者 Liuxin Chen Xiaoming Wang Yunbo Li Pan Tan Jiapei Du 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3125-3145,共21页
This study investigated the hydraulic and mechanical behaviors of unsaturated coarse-grained railway embankment fill materials(CREFMs)using a novel unsaturated large-scale triaxial apparatus equipped with the axis tra... This study investigated the hydraulic and mechanical behaviors of unsaturated coarse-grained railway embankment fill materials(CREFMs)using a novel unsaturated large-scale triaxial apparatus equipped with the axis translation technique(ATT).Comprehensive soil-water retention and constant-suction triaxial compression tests were conducted to evaluate the effects of initial void ratio,matric suction,and confining pressure on the properties of CREFMs.Key findings reveal a primary suction range of 0 e100 kPa characterized by hysteresis,which intensifies with decreasing density.Notably,the air entry value and residual suction are influenced by void ratio,with higher void ratios leading to decreased air entry values and residual suctions,underscoring the critical role of void ratio in hydraulic behavior.Additionally,the critical state line(CSL)in the bi-logarithmic space of void ratio and mean effective stress shifts towards higher void ratios with increasing matric suction,significantly affecting dilatancy and critical states.Furthermore,the study demonstrated that the mobilized friction angle and modulus properties depend on confining pressure and matric suction.A novel modified dilatancy equation was proposed,which enhances the predictability of CREFMs'responses under variable loading,particularly at high stress ratios defined by the deviatoric stress over the mean effective stress.This research advances the understanding of CREFMs'performance,especially under fluctuating environmental conditions that alter suction levels. 展开更多
关键词 coarse-grained railway embankment fill materials(CREFMs) Soil-water retention curve(SWRC) Constant-suction triaxial compression test Critical state Dilatancy equation Unsaturated soil
在线阅读 下载PDF
Comparative Study on Microstructure and Mechanical Properties of Coarse-grained WC-based Cemented Carbides Sintered with Ultrafine WC or (W+C) as Additives 被引量:1
6
作者 于淞百 闵凡路 +6 位作者 LI De NOUDEM Guillaume Jacques ZHANG Hailong MA Jichang ZHAO Kui YAO Zhanhu 张建峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期399-409,共11页
The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.O... The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase. 展开更多
关键词 coarse-grained WC-based cemented carbide ultrafine WC ultrafine(W+C) microstructure mechanical properties
原文传递
Morphological design and tunable mechanical properties of 3D spinodal membrane structures:adaptive coarse-grained modelling
7
作者 Yujie Xiang Jie Tian +2 位作者 Keke Tang Xianqiao Wang Zheng Zhong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期166-178,共13页
The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to re... The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to regular structures,due to their relatively easy parameterization and controllability.Efficiently predicting the mechanical properties of 3D spinodal membrane structure remains a challenge,given that the features of the membrane necessitate adaptive mesh through the modelling process.This paper proposes an integrated approach for morphological design with customized mechanical properties,incorporating the spinodal decomposition method and adaptive coarse-grained modeling,which can produce various morphologies such as lamellar,columnar,and cubic structures.Pseudo-periodic parameterβand orientational parameterΘ(θ_(1),θ_(2),θ_(3))are identified to achieve the optimal goal of anisotropic mechanical properties.Parametric analysis is conducted to reveal the correlation between the customized spinodal structure and mechanical performance.Our work provides an integrated approach for morphological variation and tuning mechanical properties,paving the way for the design and development of customized functional materials similar to 3D spinodal membrane structures. 展开更多
关键词 Morphological design Spinodal decomposition Adaptive coarse-grained modeling Mechanical properties Parametric design
原文传递
Predicting the assembly/disassembly order of protein complexes via coarse-grained simulations
8
作者 Yunxiao Lu Xin Liu Zhiyong Zhang 《中国科学技术大学学报》 CSCD 北大核心 2024年第12期7-15,I0002,I0008,共11页
The assembly of a protein complex is very important for its biological function,which can be investigated by determining the order of assembly/disassembly of its protein subunits.Although static structures of many pro... The assembly of a protein complex is very important for its biological function,which can be investigated by determining the order of assembly/disassembly of its protein subunits.Although static structures of many protein com-plexes are available in the protein data bank,their assembly/disassembly orders of subunits are largely unknown.In addition to experimental techniques for studying subcomplexes in the assembly/disassembly of a protein complex,computational methods can be used to predict the assembly/disassembly order.Since sampling is a nontrivial issue in simulating the assembly/disassembly process,coarse-grained simulations are more efficient than atomic simulations are.In this work,we developed computational protocols for predicting the assembly/disassembly orders of protein complexes via coarse-grained simulations.The protocols were illustrated via two protein complexes,and the predicted assembly/disassembly orders were consistent with the available experimental data. 展开更多
关键词 protein complexes assembly/disassembly order coarse-grained simulations native contacts
在线阅读 下载PDF
Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method 被引量:1
9
作者 Chengyong Peng JianshuWu +2 位作者 Mao Jiang Biao Yin Yishan Lou 《Energy Engineering》 EI 2025年第1期185-201,共17页
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract... To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures. 展开更多
关键词 Hydraulic fracturing discrete element method PROPPANT SPHERICITY CFD-DEM
在线阅读 下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:3
10
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Modeling biomembranes and red blood cells by coarse-grained particle methods 被引量:1
11
作者 H.LI H.Y.CHANG +3 位作者 J.YANG L.LU Y.H.TANG G.LYKOTRAFITIS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期3-20,共18页
In this work, the previously developed coarse-grained (CG) particle models for biomembranes and red blood cells (RBCs) are reviewed, and the advantages of the CG particle methods over the continuum and atomistic s... In this work, the previously developed coarse-grained (CG) particle models for biomembranes and red blood cells (RBCs) are reviewed, and the advantages of the CG particle methods over the continuum and atomistic simulations for modeling biological phenomena are discussed. CG particle models can largely increase the length scale and time scale of atomistic simulations by eliminating the fast degrees of freedom while preserving the mesoscopic structures and properties of the simulated system. Moreover, CG particle models can be used to capture the microstructural alternations in diseased RBCs and simulate the topological changes of biomembranes and RBCs, which are the major challenges to the typical continuum representations of membranes and RBCs. The power and versatility of CG particle methods are demonstrated:through simulating the dynamical processes mvolving significant topological .changes e.g. lipid self-assembly vesicle fusion and membrane budding. 展开更多
关键词 coarse-grained molecular dynamics lipid bilayer red blood cell membrane membrane fusion
在线阅读 下载PDF
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage 被引量:1
12
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
In situ stress inversion using nonlinear stress boundaries achieved by the bubbling method 被引量:1
13
作者 Xige Liu Chenchun Huang +3 位作者 Wancheng Zhu Joung Oh Chengguo Zhang Guangyao Si 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1510-1527,共18页
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha... Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries. 展开更多
关键词 In situ stress field Inversion method The bubbling method Nonlinear stress boundary Multiple linear regression method
在线阅读 下载PDF
Insight Into the Separation-of-Variable Methods for the Closed-Form Solutions of Free Vibration of Rectangular Thin Plates
14
作者 Yufeng Xing Ye Yuan Gen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期329-355,共27页
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica... The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well. 展开更多
关键词 Separation-of-variable method Rayleigh quotient nodal line eigenvalue equation bisection method
在线阅读 下载PDF
Improved methods,properties,applications and prospects of microbial induced carbonate precipitation(MICP)treated soil:A review 被引量:2
15
作者 Xuanshuo Zhang Hongyu Wang +3 位作者 Ya Wang Jinghui Wang Jing Cao Gang Zhang 《Biogeotechnics》 2025年第1期34-54,共21页
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi... Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications. 展开更多
关键词 Soil improvement Bio-cement MICP Improved methods Field application cases
在线阅读 下载PDF
一种基于Least Square Method算法的城轨车辆车门动作时间精准判断的研究
16
作者 李宏菱 宋华杰 +3 位作者 马仲智 周辉 李晴 陈龙 《时代汽车》 2025年第3期190-192,共3页
为研究城市轨道交通车辆客室车门动作时间精准性,门的动作主要依靠直流无刷电机的驱动,所以门动作判断的根本,是对电机运动状态的判读,门运动过程中由于电机码盘线受杂波干扰,系统无法准确寻找计时点从而影响系统判断门运动时间;建立波... 为研究城市轨道交通车辆客室车门动作时间精准性,门的动作主要依靠直流无刷电机的驱动,所以门动作判断的根本,是对电机运动状态的判读,门运动过程中由于电机码盘线受杂波干扰,系统无法准确寻找计时点从而影响系统判断门运动时间;建立波形矫正模型,利用数学方法校准波形,让MCU找出最佳计时点并处理(误差不超过10ms),采用最小二乘法模型,通过最小化误差的平方和找到一组数据的最佳函数匹配,求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,可精准地得到门动作时间。模拟测试结果表明,门动作时间测算误差所示其误差为7.42ms,小于10ms。 展开更多
关键词 城轨车辆 客室车门 电机码盘 Least Square method算法 门动作时间精准
在线阅读 下载PDF
Research on Bearing Fault Diagnosis Method Based on Deep Learning 被引量:1
17
作者 Ting Zheng 《Journal of Electronic Research and Application》 2025年第1期1-6,共6页
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i... Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields. 展开更多
关键词 Deep learning Bearing failure Diagnostic methods
在线阅读 下载PDF
A dual⁃parameter method for seismic resilience assessment of buildings 被引量:1
18
作者 LI Shuang HU Binbin +1 位作者 LIU Wen ZHAI Changhai 《Journal of Southeast University(English Edition)》 2025年第1期1-11,共11页
To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on... To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings. 展开更多
关键词 seismic resilience assessment dual-parameter method functional loss recovery time Bayesian networks
在线阅读 下载PDF
A Review of the Hydrodynamic Damping Characteristics of Blade-like Structures:Focus on the Quantitative Identification Methods and Key Influencing Parameters 被引量:1
19
作者 Yongshun Zeng Zhaohui Qian +1 位作者 Jiayun Zhang Zhifeng Yao 《哈尔滨工程大学学报(英文版)》 2025年第1期21-34,共14页
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev... Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage. 展开更多
关键词 Blade fatigue Hydrodynamic damping ratio Identification method Affecting factors Prediction formula
在线阅读 下载PDF
Formation mechanism of herpetrione self-assembled nanoparticles based on p H-driven method 被引量:1
20
作者 Yuwen Zhu Xiang Deng +4 位作者 Yan Wu Baode Shen Lingyu Hang Yuye Xue Hailong Yuan 《Chinese Chemical Letters》 2025年第1期387-391,共5页
The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method... The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method. 展开更多
关键词 Traditional Chinese medicine NANOPARTICLES Herpetrione Interaction pH-driven method Self-assembly Isothermal titration calorimetry
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部