To overcome the limitations of microscale experimental techniques and molecular dynamics(MD)simulations,a coarse-grained molecular dynamics(CGMD)method was used to simulate the wetting processes of clay aggregates.Bas...To overcome the limitations of microscale experimental techniques and molecular dynamics(MD)simulations,a coarse-grained molecular dynamics(CGMD)method was used to simulate the wetting processes of clay aggregates.Based on the evolution of swelling stress,final dry density,water distribution,and clay arrangements under different target water contents and dry densities,a relationship between the swelling behaviors and microstructures was established.The simulated results showed that when the clay-water well depth was 300 kcal/mol,the basal spacing from CGMD was consistent with the X-ray diffraction(XRD)data.The effect of initial dry density on swelling stress was more pronounced than that of water content.The anisotropic swelling characteristics of the aggregates are related to the proportion of horizontally oriented clay mineral layers.The swelling stress was found to depend on the distribution of tactoids at the microscopic level.At lower initial dry density,the distribution of tactoids was mainly controlled by water distribution.With increase in the bound water content,the basal spacing expanded,and the swelling stresses increased.Free water dominated at higher water contents,and the particles were easily rotated,leading to a decrease in the number of large tactoids.At higher dry densities,the distances between the clay mineral layers decreased,and the movement was limited.When bound water enters the interlayers,there is a significant increase in interparticle repulsive forces,resulting in a greater number of small-sized tactoids.Eventually,a well-defined logarithmic relationship was observed between the swelling stress and the total number of tactoids.These findings contribute to a better understanding of coupled macro-micro swelling behaviors of montmorillonite-based materials,filling a study gap in clay-water interactions on a micro scale.展开更多
Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to t...Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to the complexity of pore structure in heterogeneous coarse-grained soil,identifying the critical threshold for the transition from Darcy to non-Darcy seepage is challenging.This paper introduces equivalent particle size(dep)and relative roughness(λt)as indirect indicators reflecting the pore characteristics,quantifying the complex pore structure of heterogeneous coarse-grained soil.The formulae for the derivation of Reynolds number and resistance coefficient for heterogeneous coarse-grained soil are presented.By conducting permeability tests on coarse-grained soils with different pore structures,the effect of particle composition heterogeneity on seepage characteristics was analyzed.The flow regime of heterogeneous coarse-grained soil is divided into laminar,transitional,and turbulent stages based on the relationship between Reynolds number and resistance coefficient.The energy loss patterns in each stage are closely related to pore structure.By setting the permeability ratio k∗=0.95 as the critical threshold for the transition from Darcy to non-Darcy seepage,a method for calculating the critical Reynolds number(Recr)for heterogeneous coarse-grained soil is proposed.Furthermore,we applied this method to other published laboratory data,analyzing the differences in the critical threshold for seepage transition between homogeneous and heterogeneous coarse-grained soil.This study aims to propose a more accurate and general criterion for the transition from Darcy to non-Darcy seepage in heterogeneous coarse-grained soil.展开更多
This study investigated the hydraulic and mechanical behaviors of unsaturated coarse-grained railway embankment fill materials(CREFMs)using a novel unsaturated large-scale triaxial apparatus equipped with the axis tra...This study investigated the hydraulic and mechanical behaviors of unsaturated coarse-grained railway embankment fill materials(CREFMs)using a novel unsaturated large-scale triaxial apparatus equipped with the axis translation technique(ATT).Comprehensive soil-water retention and constant-suction triaxial compression tests were conducted to evaluate the effects of initial void ratio,matric suction,and confining pressure on the properties of CREFMs.Key findings reveal a primary suction range of 0 e100 kPa characterized by hysteresis,which intensifies with decreasing density.Notably,the air entry value and residual suction are influenced by void ratio,with higher void ratios leading to decreased air entry values and residual suctions,underscoring the critical role of void ratio in hydraulic behavior.Additionally,the critical state line(CSL)in the bi-logarithmic space of void ratio and mean effective stress shifts towards higher void ratios with increasing matric suction,significantly affecting dilatancy and critical states.Furthermore,the study demonstrated that the mobilized friction angle and modulus properties depend on confining pressure and matric suction.A novel modified dilatancy equation was proposed,which enhances the predictability of CREFMs'responses under variable loading,particularly at high stress ratios defined by the deviatoric stress over the mean effective stress.This research advances the understanding of CREFMs'performance,especially under fluctuating environmental conditions that alter suction levels.展开更多
The aging of biomolecular condensates has been implicated in the pathogenesis of various neurodegenerative diseases,characterized by a transition from a physiologically liquid-like state to a pathologically ordered st...The aging of biomolecular condensates has been implicated in the pathogenesis of various neurodegenerative diseases,characterized by a transition from a physiologically liquid-like state to a pathologically ordered structure.However,the mechanisms governing the formation of these pathological aggregates remain poorly understood.To address this,the present study utilizes coarse-grained molecular dynamics simulations based on Langevin dynamics to explore the structural,dynamical,and material property changes of protein condensates during the aging process.Here,we further develop a nonequilibrium simulation algorithm that not only captures the characteristics of time-dependent amount of aging beads but also reflects the structural information of chain-like connections between aging beads.Our findings reveal that aging induces compaction of the condensates,accompanied by a decrease in diffusion rates and an increase in viscosity.Further analysis suggests that the heterogeneous diffusivity within the condensates may drive the aging process to initiate preferentially at the condensate surface.Our simulation results align with the experimental phenomena and provide a clear physical picture of the aging dynamics.展开更多
This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two exp...This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.展开更多
The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.O...The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase.展开更多
The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to re...The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to regular structures,due to their relatively easy parameterization and controllability.Efficiently predicting the mechanical properties of 3D spinodal membrane structure remains a challenge,given that the features of the membrane necessitate adaptive mesh through the modelling process.This paper proposes an integrated approach for morphological design with customized mechanical properties,incorporating the spinodal decomposition method and adaptive coarse-grained modeling,which can produce various morphologies such as lamellar,columnar,and cubic structures.Pseudo-periodic parameterβand orientational parameterΘ(θ_(1),θ_(2),θ_(3))are identified to achieve the optimal goal of anisotropic mechanical properties.Parametric analysis is conducted to reveal the correlation between the customized spinodal structure and mechanical performance.Our work provides an integrated approach for morphological variation and tuning mechanical properties,paving the way for the design and development of customized functional materials similar to 3D spinodal membrane structures.展开更多
The assembly of a protein complex is very important for its biological function,which can be investigated by determining the order of assembly/disassembly of its protein subunits.Although static structures of many pro...The assembly of a protein complex is very important for its biological function,which can be investigated by determining the order of assembly/disassembly of its protein subunits.Although static structures of many protein com-plexes are available in the protein data bank,their assembly/disassembly orders of subunits are largely unknown.In addition to experimental techniques for studying subcomplexes in the assembly/disassembly of a protein complex,computational methods can be used to predict the assembly/disassembly order.Since sampling is a nontrivial issue in simulating the assembly/disassembly process,coarse-grained simulations are more efficient than atomic simulations are.In this work,we developed computational protocols for predicting the assembly/disassembly orders of protein complexes via coarse-grained simulations.The protocols were illustrated via two protein complexes,and the predicted assembly/disassembly orders were consistent with the available experimental data.展开更多
Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-...Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. The results indicated that the chemical constituents of the inclusions gradually varied from the Ti-O+Ti-Mg-O compound oxide to the Ti-Mg-O+MgO compound oxide and the single-phase MgO, as the Mg content increased from 0.002 3M to 0.006%. A trace addition of Mg (approximately 0. 002%) led to the refinement of Ti-bearing inclusions by creating the Ti-Mg-O compound oxide and provided favorable size distribution of the inclusions for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ with enhanced impact toughness. Otherwise, a high content of Mg (approximately 0. 006%) produced a single-phase MgO, which was impotent to nucleate an acicular ferrite, and a microstructure comprised of a ferrite side plate and a grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations.展开更多
To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water content...To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.展开更多
The molybdenum-nickel deposits in Shuidong District of Nayong County (Guizhou Province, Southwest China) are found mainly in black shale series of Lower Cambrian Niutitang Formation, which is another Mo-Ni-rich regi...The molybdenum-nickel deposits in Shuidong District of Nayong County (Guizhou Province, Southwest China) are found mainly in black shale series of Lower Cambrian Niutitang Formation, which is another Mo-Ni-rich region besides Zunyi District (Guizhou province). Our systematic study on the Mo-Ni deposits in Tangjiaba of Nayong reveals that layered coarse-grained limestones, spherical beaded limestones concretions are hosted at the lower seam of the Mo-Ni deposits. Its strong negative carbon isotope anomaly (the carbon isotope value of the coarse-grained limestones varies from -2.148‰ to 8.223‰) is similar to that in the modern submarine black smoker chimney. The carbon in the coarse-grained limestones from black rock series of Nayong County might be deep source inorganic carbon. The seams, coarse-grained limestones, ore-bearing coarse-grained limestones and the roof and floor of the deposits are characterized by co-variation on the trace element spider diagram, showing good homology. The extraordinary enrichment of Ag, As and Sb resembles hydrothermal sedimentation. Pro-Earth's core elements Se is strongly enriched in Ni-Mo ore-bearing coarse-grained limestones. The ore-bearing rock series has an extremely low Th/U value (0.012-0.19); in the logU-logTh Cartesian Coordinates, the samples of the roof and floor of the deposits and ore-bearing coarse-grained limestones are found in the East Pacific tise; and the samples of coarse-grained limestones are found between the paleo-hydrothermal dedimentary area and the East Pacific tise. The chondrite-normalized rare earth element patterns of the Ni-Mo deposits show LREE enrichment, Ce negative anomaly, and Eu negative anomaly (which is supposed to be influenced by the deep magmatic processes in an extensional environment) resembles the rare earth element distribution patterns of the fluid and its sediments in modern submarine hydrothermal system. It proves that coarse-grained limestones is characterized by typical hydrothermal limestones, being closely related with the genesis of Mo-Ni deposits in Nayong County, which provides new evidence for hydrothermal sedimentary genesis of Mo-Ni deposit and negative carbon anomaly in the basal Cambrian on a global scale.展开更多
The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m microscopic lattice sites are group...The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m microscopic lattice sites are grouped together to form a CG cell, upon which CG processes take place with well-defined CG rates. Such a CG approach almost fails if the CG rates are obtained by a simple local mean field (s-LMF) approximation, due to the ignorance of correlation among adjcent cells resulting fl'om the trimolecular reaction in this nonlinear system. By proper incorporating such boundary effects, thus introduce the so-cMled b-LMF CG approach. Extensive numerical simulations demonstrate that the b-LMF method can reproduce the oscillation behavior of the system quite well, given that the diffusion constant is not too small. In addition, the deviation from the KMC results reaches a nearly zero minimum level at an intermediate cell size, which lies in between the effective diffusion length and the minimal size required to sustain a well-defined temporal oscillation.展开更多
In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in ...In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies.展开更多
The dynamic recrystallization (DRX) and static recrystallization (SRX) behaviour of coarse-grained aus- tenite in a Nb-V-Ti microalloyed steel were studied by using a Gleeble thermomechanical simulator. Continuous...The dynamic recrystallization (DRX) and static recrystallization (SRX) behaviour of coarse-grained aus- tenite in a Nb-V-Ti microalloyed steel were studied by using a Gleeble thermomechanical simulator. Continuous and interrupted compression tests of coarse-grained austenite were performed in the temperature range of 1000-1 150 ℃ at a strain rate of 0. 1- 5 s 1. The peak and critical strains for the onset of DRX were identified with strain hardening rate analysis, and the ratio of critical strain to peak strain was found to be consistent with the one reported for fine- grained austenite. An equation of the time for 50% softening was proposed by considering the activation energy of steel without microalloying elements and the solute drag effect of microalloying elements. Strain-induced precipitation may not take place at the deformation temperature above 1000 ℃, which indicates that SRX of coarse-grained aus- tenite is mainly retarded by coarse grain size and Nb in solution during rough rolling.展开更多
Gradation equation is one way to describe the gradation of coarse-grained soil conveniently,exactly and quantitatively.With the gradation equation,the influence of gradation on the mechanical behaviors of coarse-grain...Gradation equation is one way to describe the gradation of coarse-grained soil conveniently,exactly and quantitatively.With the gradation equation,the influence of gradation on the mechanical behaviors of coarse-grained soil can be expressed quantitatively.A new gradation equation with a parameter is proposed.The basic properties and applicability of the new equation are studied.The results show that the proposed equation has the applicability to express coarse-grained soil gradation(CSG),and the range of the parameter β is found to be 0<β<1.The value ofbdetermines the gradation curve shape.If β>0.5,the gradation curve is sigmoidal,otherwise the gradation curve is hyperbolic.For well graded gradations,the parameter has the value of 0.13<β<1.Several CSGs used in domestic and foreign earth-rockfill dams are probed,and the value of the parameterbfalls in the range of 0.18 to 0.97.The investigation of the range of β is of value to guide the design for CSG of earth-rockfill dam.展开更多
By using large scale triaxial shearing apparatus,consolidated-drained shear tests were conducted on coarse-grained soil with different gradations.In order to describe their deformation rules,three main characteristics...By using large scale triaxial shearing apparatus,consolidated-drained shear tests were conducted on coarse-grained soil with different gradations.In order to describe their deformation rules,three main characteristics of tangent Poisson ratio curves were summarized and the reason was revealed by dividing the movement of soil particles into two kinds: the movement of fine particles and the movement of coarse particles.Then,a volumetric strain expression and a tangent Poisson ratio expression were put forward,and two defects of widely used Duncan-Chang model were fixed.Results calculated from them agree well with test results.There are three parameters,namely L,G and F,in this new model.Parameter L reflects the dilatancy of a specimen and L=4 can be used as a criterion to estimate whether a certain kind of soil has dilatancy quality or not.Parameters G and F relate to the initial slope of tangent Poisson ratio curves,and G=F=0 indicates a special situation which happens in dense granular material of the same diameter.Influences of various gradations on volume deformation are mainly reflected in parameter L which is smaller when there are more gravels in specimens.展开更多
The effect of hydrogen addition on the deformation behavior of coarse-grained Ti-55 alloys(~20μm)was studied by uniaxial tension tests at high temperature.The elongation of hydrogenated Ti-55 titanium alloy firstly i...The effect of hydrogen addition on the deformation behavior of coarse-grained Ti-55 alloys(~20μm)was studied by uniaxial tension tests at high temperature.The elongation of hydrogenated Ti-55 titanium alloy firstly increases and then decreases with hydrogen content increasing at 8750 C.The highest elongation of 243.8%is obtained in the hydrogenated alloy with 0.1 wt%H,and the peak stress reaches a minimum value of 29.0 MPa in the hydrogenated alloy with 0.3 wt%H.Compared with that of the unhydrogenated alloy,the elongation of the hydrogenated alloy with 0.1 wt%H increases by 41.3%and its peak stress decreases by 40.6%at 875℃.Hydrogen addition can promote the transformation of β phase and the dislocation movement.Appropriate hydrogen content can evidently improve the deformation properties of coarse-grained Ti-55 titanium alloy.展开更多
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit...A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.展开更多
ATP-binding cassette exporters transport many substrates out of cellular membranes via alternating between inward-facing and outward-facing conformations. Despite extensive research efforts over the past decades, unde...ATP-binding cassette exporters transport many substrates out of cellular membranes via alternating between inward-facing and outward-facing conformations. Despite extensive research efforts over the past decades, understanding of the molecular mechanism remains elusive. As these large-scale conformational movements are global and collective, we have previously performed extensive coarse-grained molecular dynamics simulations of the potential of mean force along the conformational transition pathway [J. Phys. Chem. B 119, 1295(2015)]. However, the occluded conformational state, in which both the internal and external gate are closed, was not determined in the calculated free energy profile. In this work, we extend the above methods to the calculation of the free energy profile along the reaction coordinate, d1-d2, which are the COM distances between the two sides of the internal(d1)and the external gate(d2). The potential of mean force is thus obtained to identify the transition pathway, along which several outward-facing, inward-facing, and occluded state structures are predicted in good agreement with structural experiments. Our coarse-grained molecular dynamics free-energy simulations demonstrate that the internal gate is closed before the external gate is open during the inward-facing to outward-facing transition and vice versa during the inward-facing to outward-facing transition. Our results capture the unidirectional feature of substrate translocation via the exporter, which is functionally important in biology. This finding is different from the previous result, in which both the internal and external gates are open reported in an X-ray experiment [Proc. Natl. Acad. Sci. USA 104,19005(2007)]. Our study sheds light on the molecular mechanism of the state transitions in an ATP-binding cassette exporter.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42172308)the Youth Innovation Promotion Association CAS(Grant No.2022331)the Key Research and Development Program of Hubei Province(Grant No.2022BAA036).
文摘To overcome the limitations of microscale experimental techniques and molecular dynamics(MD)simulations,a coarse-grained molecular dynamics(CGMD)method was used to simulate the wetting processes of clay aggregates.Based on the evolution of swelling stress,final dry density,water distribution,and clay arrangements under different target water contents and dry densities,a relationship between the swelling behaviors and microstructures was established.The simulated results showed that when the clay-water well depth was 300 kcal/mol,the basal spacing from CGMD was consistent with the X-ray diffraction(XRD)data.The effect of initial dry density on swelling stress was more pronounced than that of water content.The anisotropic swelling characteristics of the aggregates are related to the proportion of horizontally oriented clay mineral layers.The swelling stress was found to depend on the distribution of tactoids at the microscopic level.At lower initial dry density,the distribution of tactoids was mainly controlled by water distribution.With increase in the bound water content,the basal spacing expanded,and the swelling stresses increased.Free water dominated at higher water contents,and the particles were easily rotated,leading to a decrease in the number of large tactoids.At higher dry densities,the distances between the clay mineral layers decreased,and the movement was limited.When bound water enters the interlayers,there is a significant increase in interparticle repulsive forces,resulting in a greater number of small-sized tactoids.Eventually,a well-defined logarithmic relationship was observed between the swelling stress and the total number of tactoids.These findings contribute to a better understanding of coupled macro-micro swelling behaviors of montmorillonite-based materials,filling a study gap in clay-water interactions on a micro scale.
基金supported by the National Nature Science Foundation of China (Grant No.42072303)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2021Z004).
文摘Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to the complexity of pore structure in heterogeneous coarse-grained soil,identifying the critical threshold for the transition from Darcy to non-Darcy seepage is challenging.This paper introduces equivalent particle size(dep)and relative roughness(λt)as indirect indicators reflecting the pore characteristics,quantifying the complex pore structure of heterogeneous coarse-grained soil.The formulae for the derivation of Reynolds number and resistance coefficient for heterogeneous coarse-grained soil are presented.By conducting permeability tests on coarse-grained soils with different pore structures,the effect of particle composition heterogeneity on seepage characteristics was analyzed.The flow regime of heterogeneous coarse-grained soil is divided into laminar,transitional,and turbulent stages based on the relationship between Reynolds number and resistance coefficient.The energy loss patterns in each stage are closely related to pore structure.By setting the permeability ratio k∗=0.95 as the critical threshold for the transition from Darcy to non-Darcy seepage,a method for calculating the critical Reynolds number(Recr)for heterogeneous coarse-grained soil is proposed.Furthermore,we applied this method to other published laboratory data,analyzing the differences in the critical threshold for seepage transition between homogeneous and heterogeneous coarse-grained soil.This study aims to propose a more accurate and general criterion for the transition from Darcy to non-Darcy seepage in heterogeneous coarse-grained soil.
基金jointly supported by the Science Fund for Distinguished Young Scholars of Hunan Province,China(Grant No.2024JJ2073)the National Natural Science Foundation of China(Grant No.52178443)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant No.2022ZZTS0620)。
文摘This study investigated the hydraulic and mechanical behaviors of unsaturated coarse-grained railway embankment fill materials(CREFMs)using a novel unsaturated large-scale triaxial apparatus equipped with the axis translation technique(ATT).Comprehensive soil-water retention and constant-suction triaxial compression tests were conducted to evaluate the effects of initial void ratio,matric suction,and confining pressure on the properties of CREFMs.Key findings reveal a primary suction range of 0 e100 kPa characterized by hysteresis,which intensifies with decreasing density.Notably,the air entry value and residual suction are influenced by void ratio,with higher void ratios leading to decreased air entry values and residual suctions,underscoring the critical role of void ratio in hydraulic behavior.Additionally,the critical state line(CSL)in the bi-logarithmic space of void ratio and mean effective stress shifts towards higher void ratios with increasing matric suction,significantly affecting dilatancy and critical states.Furthermore,the study demonstrated that the mobilized friction angle and modulus properties depend on confining pressure and matric suction.A novel modified dilatancy equation was proposed,which enhances the predictability of CREFMs'responses under variable loading,particularly at high stress ratios defined by the deviatoric stress over the mean effective stress.This research advances the understanding of CREFMs'performance,especially under fluctuating environmental conditions that alter suction levels.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1405000)the National Natural Science Foundation of China(Grant Nos.12274212,12347102,and 12174184)Innovation Program for Quantum Science and Technology(Grant No.2024ZD0300101).
文摘The aging of biomolecular condensates has been implicated in the pathogenesis of various neurodegenerative diseases,characterized by a transition from a physiologically liquid-like state to a pathologically ordered structure.However,the mechanisms governing the formation of these pathological aggregates remain poorly understood.To address this,the present study utilizes coarse-grained molecular dynamics simulations based on Langevin dynamics to explore the structural,dynamical,and material property changes of protein condensates during the aging process.Here,we further develop a nonequilibrium simulation algorithm that not only captures the characteristics of time-dependent amount of aging beads but also reflects the structural information of chain-like connections between aging beads.Our findings reveal that aging induces compaction of the condensates,accompanied by a decrease in diffusion rates and an increase in viscosity.Further analysis suggests that the heterogeneous diffusivity within the condensates may drive the aging process to initiate preferentially at the condensate surface.Our simulation results align with the experimental phenomena and provide a clear physical picture of the aging dynamics.
基金support from the National Natural Science Foundation of China (No. U1960202)the Opening Foundation from Shanghai Engineering Research Center of Hot Manufacturing, China (No. 18DZ2253400)。
文摘This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.
基金Funded by the Technology Innovation Leading Program of Shaanxi(No.2022QFY08-02)。
文摘The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase.
基金supported by the National Natural Science Foundation of China(Grant No.11872278)the Science and Technology Commission of Shanghai Municipality(Grant No.21ZR1467200)the Fundamental Research Funds for the Central Universities.
文摘The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to regular structures,due to their relatively easy parameterization and controllability.Efficiently predicting the mechanical properties of 3D spinodal membrane structure remains a challenge,given that the features of the membrane necessitate adaptive mesh through the modelling process.This paper proposes an integrated approach for morphological design with customized mechanical properties,incorporating the spinodal decomposition method and adaptive coarse-grained modeling,which can produce various morphologies such as lamellar,columnar,and cubic structures.Pseudo-periodic parameterβand orientational parameterΘ(θ_(1),θ_(2),θ_(3))are identified to achieve the optimal goal of anisotropic mechanical properties.Parametric analysis is conducted to reveal the correlation between the customized spinodal structure and mechanical performance.Our work provides an integrated approach for morphological variation and tuning mechanical properties,paving the way for the design and development of customized functional materials similar to 3D spinodal membrane structures.
基金This work was supported by the National Key Research and Development Program of China(2021YFA1301504)the Chinese Academy of Sciences Strategic Priority Research Program(XDB37040202)the National Natural Science Foundation of China(91953101).
文摘The assembly of a protein complex is very important for its biological function,which can be investigated by determining the order of assembly/disassembly of its protein subunits.Although static structures of many protein com-plexes are available in the protein data bank,their assembly/disassembly orders of subunits are largely unknown.In addition to experimental techniques for studying subcomplexes in the assembly/disassembly of a protein complex,computational methods can be used to predict the assembly/disassembly order.Since sampling is a nontrivial issue in simulating the assembly/disassembly process,coarse-grained simulations are more efficient than atomic simulations are.In this work,we developed computational protocols for predicting the assembly/disassembly orders of protein complexes via coarse-grained simulations.The protocols were illustrated via two protein complexes,and the predicted assembly/disassembly orders were consistent with the available experimental data.
文摘Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. The results indicated that the chemical constituents of the inclusions gradually varied from the Ti-O+Ti-Mg-O compound oxide to the Ti-Mg-O+MgO compound oxide and the single-phase MgO, as the Mg content increased from 0.002 3M to 0.006%. A trace addition of Mg (approximately 0. 002%) led to the refinement of Ti-bearing inclusions by creating the Ti-Mg-O compound oxide and provided favorable size distribution of the inclusions for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ with enhanced impact toughness. Otherwise, a high content of Mg (approximately 0. 006%) produced a single-phase MgO, which was impotent to nucleate an acicular ferrite, and a microstructure comprised of a ferrite side plate and a grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations.
基金Project(2016ZGHJ/XZHTL-YQSC-26)supported by the Key Scientific Research Project of China Gold GroupProject(SQ2019QZKK2806)supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program,China+1 种基金Project(300102268716)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LHKA-G201701)supported by the Science and Technology Project of Yalong River Hydropower Development Company,China。
文摘To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.
基金sponsored by the Doctoral Fund of Ministry of Education of China (Grant no.20105201110002)Research Fund of Guizhou Province and Doctoral Programme Fund of Guizhou University
文摘The molybdenum-nickel deposits in Shuidong District of Nayong County (Guizhou Province, Southwest China) are found mainly in black shale series of Lower Cambrian Niutitang Formation, which is another Mo-Ni-rich region besides Zunyi District (Guizhou province). Our systematic study on the Mo-Ni deposits in Tangjiaba of Nayong reveals that layered coarse-grained limestones, spherical beaded limestones concretions are hosted at the lower seam of the Mo-Ni deposits. Its strong negative carbon isotope anomaly (the carbon isotope value of the coarse-grained limestones varies from -2.148‰ to 8.223‰) is similar to that in the modern submarine black smoker chimney. The carbon in the coarse-grained limestones from black rock series of Nayong County might be deep source inorganic carbon. The seams, coarse-grained limestones, ore-bearing coarse-grained limestones and the roof and floor of the deposits are characterized by co-variation on the trace element spider diagram, showing good homology. The extraordinary enrichment of Ag, As and Sb resembles hydrothermal sedimentation. Pro-Earth's core elements Se is strongly enriched in Ni-Mo ore-bearing coarse-grained limestones. The ore-bearing rock series has an extremely low Th/U value (0.012-0.19); in the logU-logTh Cartesian Coordinates, the samples of the roof and floor of the deposits and ore-bearing coarse-grained limestones are found in the East Pacific tise; and the samples of coarse-grained limestones are found between the paleo-hydrothermal dedimentary area and the East Pacific tise. The chondrite-normalized rare earth element patterns of the Ni-Mo deposits show LREE enrichment, Ce negative anomaly, and Eu negative anomaly (which is supposed to be influenced by the deep magmatic processes in an extensional environment) resembles the rare earth element distribution patterns of the fluid and its sediments in modern submarine hydrothermal system. It proves that coarse-grained limestones is characterized by typical hydrothermal limestones, being closely related with the genesis of Mo-Ni deposits in Nayong County, which provides new evidence for hydrothermal sedimentary genesis of Mo-Ni deposit and negative carbon anomaly in the basal Cambrian on a global scale.
文摘The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m microscopic lattice sites are grouped together to form a CG cell, upon which CG processes take place with well-defined CG rates. Such a CG approach almost fails if the CG rates are obtained by a simple local mean field (s-LMF) approximation, due to the ignorance of correlation among adjcent cells resulting fl'om the trimolecular reaction in this nonlinear system. By proper incorporating such boundary effects, thus introduce the so-cMled b-LMF CG approach. Extensive numerical simulations demonstrate that the b-LMF method can reproduce the oscillation behavior of the system quite well, given that the diffusion constant is not too small. In addition, the deviation from the KMC results reaches a nearly zero minimum level at an intermediate cell size, which lies in between the effective diffusion length and the minimal size required to sustain a well-defined temporal oscillation.
基金Project(50639050) supported by the National Natural Science Foundation of China and Er-Tan Hydraulicpower Limited CompanyProject(50579014) supported by the National Natural Science Foundation of China+3 种基金Project(09KJD560003) supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject(BK2007582) supported by Jiangsu Provincial Natural Science Foundation of ChinaProject(20070294002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(GH200904) supported by Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,China
文摘In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies.
文摘The dynamic recrystallization (DRX) and static recrystallization (SRX) behaviour of coarse-grained aus- tenite in a Nb-V-Ti microalloyed steel were studied by using a Gleeble thermomechanical simulator. Continuous and interrupted compression tests of coarse-grained austenite were performed in the temperature range of 1000-1 150 ℃ at a strain rate of 0. 1- 5 s 1. The peak and critical strains for the onset of DRX were identified with strain hardening rate analysis, and the ratio of critical strain to peak strain was found to be consistent with the one reported for fine- grained austenite. An equation of the time for 50% softening was proposed by considering the activation energy of steel without microalloying elements and the solute drag effect of microalloying elements. Strain-induced precipitation may not take place at the deformation temperature above 1000 ℃, which indicates that SRX of coarse-grained aus- tenite is mainly retarded by coarse grain size and Nb in solution during rough rolling.
基金Project(2018YFC1508505)supported by the National Key Research and Development Program of ChinaProject(U1865104)supported by Yalong River Joint Fund of Natural Science Foundation of China-Yalong River Basin Hydropower Development Co.,Ltd.,China+1 种基金Project(51479052)supported by National Natural Science of ChinaProject(2019T120443)supported by China Postdoctoral Science Foundation。
文摘Gradation equation is one way to describe the gradation of coarse-grained soil conveniently,exactly and quantitatively.With the gradation equation,the influence of gradation on the mechanical behaviors of coarse-grained soil can be expressed quantitatively.A new gradation equation with a parameter is proposed.The basic properties and applicability of the new equation are studied.The results show that the proposed equation has the applicability to express coarse-grained soil gradation(CSG),and the range of the parameter β is found to be 0<β<1.The value ofbdetermines the gradation curve shape.If β>0.5,the gradation curve is sigmoidal,otherwise the gradation curve is hyperbolic.For well graded gradations,the parameter has the value of 0.13<β<1.Several CSGs used in domestic and foreign earth-rockfill dams are probed,and the value of the parameterbfalls in the range of 0.18 to 0.97.The investigation of the range of β is of value to guide the design for CSG of earth-rockfill dam.
基金Project(50908233)supported by the National Natural Science Foundation of ChinaProject(2008G031-Q)supported by National Engineering Laboratory for High Speed Railway Construction,China
文摘By using large scale triaxial shearing apparatus,consolidated-drained shear tests were conducted on coarse-grained soil with different gradations.In order to describe their deformation rules,three main characteristics of tangent Poisson ratio curves were summarized and the reason was revealed by dividing the movement of soil particles into two kinds: the movement of fine particles and the movement of coarse particles.Then,a volumetric strain expression and a tangent Poisson ratio expression were put forward,and two defects of widely used Duncan-Chang model were fixed.Results calculated from them agree well with test results.There are three parameters,namely L,G and F,in this new model.Parameter L reflects the dilatancy of a specimen and L=4 can be used as a criterion to estimate whether a certain kind of soil has dilatancy quality or not.Parameters G and F relate to the initial slope of tangent Poisson ratio curves,and G=F=0 indicates a special situation which happens in dense granular material of the same diameter.Influences of various gradations on volume deformation are mainly reflected in parameter L which is smaller when there are more gravels in specimens.
基金financially supported by the Equipment Pre-research Fund(No.61409230408)the National Natural Science Foundation of China(No.51875350)the Program of Shanghai Excellent Academic Research Leadership(No.19XD1401900)。
文摘The effect of hydrogen addition on the deformation behavior of coarse-grained Ti-55 alloys(~20μm)was studied by uniaxial tension tests at high temperature.The elongation of hydrogenated Ti-55 titanium alloy firstly increases and then decreases with hydrogen content increasing at 8750 C.The highest elongation of 243.8%is obtained in the hydrogenated alloy with 0.1 wt%H,and the peak stress reaches a minimum value of 29.0 MPa in the hydrogenated alloy with 0.3 wt%H.Compared with that of the unhydrogenated alloy,the elongation of the hydrogenated alloy with 0.1 wt%H increases by 41.3%and its peak stress decreases by 40.6%at 875℃.Hydrogen addition can promote the transformation of β phase and the dislocation movement.Appropriate hydrogen content can evidently improve the deformation properties of coarse-grained Ti-55 titanium alloy.
文摘A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.
基金supported by the National Natu-ral Science Foundation of China(No.21073170 and No.21273209).
文摘ATP-binding cassette exporters transport many substrates out of cellular membranes via alternating between inward-facing and outward-facing conformations. Despite extensive research efforts over the past decades, understanding of the molecular mechanism remains elusive. As these large-scale conformational movements are global and collective, we have previously performed extensive coarse-grained molecular dynamics simulations of the potential of mean force along the conformational transition pathway [J. Phys. Chem. B 119, 1295(2015)]. However, the occluded conformational state, in which both the internal and external gate are closed, was not determined in the calculated free energy profile. In this work, we extend the above methods to the calculation of the free energy profile along the reaction coordinate, d1-d2, which are the COM distances between the two sides of the internal(d1)and the external gate(d2). The potential of mean force is thus obtained to identify the transition pathway, along which several outward-facing, inward-facing, and occluded state structures are predicted in good agreement with structural experiments. Our coarse-grained molecular dynamics free-energy simulations demonstrate that the internal gate is closed before the external gate is open during the inward-facing to outward-facing transition and vice versa during the inward-facing to outward-facing transition. Our results capture the unidirectional feature of substrate translocation via the exporter, which is functionally important in biology. This finding is different from the previous result, in which both the internal and external gates are open reported in an X-ray experiment [Proc. Natl. Acad. Sci. USA 104,19005(2007)]. Our study sheds light on the molecular mechanism of the state transitions in an ATP-binding cassette exporter.