In cooperative game theory, a central problem is to allocate fairly the win of the grand coalition to the players who agreed to cooperate and form the grand coalition. Such allocations are obtained by means of values,...In cooperative game theory, a central problem is to allocate fairly the win of the grand coalition to the players who agreed to cooperate and form the grand coalition. Such allocations are obtained by means of values, having some fairness properties, expressed in most cases by groups of axioms. In an earlier work, we solved what we called the Inverse Problem for Semivalues, in which the main result was offering an explicit formula providing the set of all games with an a priori given Semivalue, associated with a given weight vector. However, in this set there is an infinite set of games for which the Semivalues are not coalitional rational, perhaps not efficient, so that these are not fair practical solutions of the above fundamental problem. Among the Semivalues, coalitional rational solutions for the Shapley Value and the Banzhaf Value have been given in two more recent works. In the present paper, based upon a general potential basis, relative to Semivalues, for a given game and a given Semivalue, we solve the connected problem: in the Inverse Set, find out a game with the same Semivalue, which is also coalitional rational. Several examples will illustrate the corresponding numerical technique.展开更多
The effective classification of urban domestic waste is the key to achieve a “waste-free city” and provides an essential guarantee for resource utilization. This article takes a coalitional game perspective to study...The effective classification of urban domestic waste is the key to achieve a “waste-free city” and provides an essential guarantee for resource utilization. This article takes a coalitional game perspective to study the dilemmas in urban domestic waste separation from the cooperative interaction of residents, government, and enterprises. The study finds that urban domestic waste classification in China is currently facing many problems, focusing on: 1) insufficient consensus among residents, 2) shortage of input funds, 3) corporate profitability difficulties, 4) weak policy constraints, and 5) difficulties in integrating goals. In this regard, each participating body still needs to focus on collective interests, coalitional games, break the dilemma society, and promote the long-term management of urban domestic waste.展开更多
In this paper,the physical layer se-cure transmission in multi-antenna multi-user cogni-tive internet-of-thing(IoT)network is investigated,where the coalitional game based joint beamform-ing and power control scheme i...In this paper,the physical layer se-cure transmission in multi-antenna multi-user cogni-tive internet-of-thing(IoT)network is investigated,where the coalitional game based joint beamform-ing and power control scheme is proposed to im-prove the achievable security of cognitive IoT de-vices.Specifically,the secondary network consisting of a muti-antenna secondary transmitter,multiple sec-ondary users(SUs),is allowed to access the licensed spectrum resource of primary user(PU)with underlay approach in the presence of an unauthorized eaves-dropper.Based on the Merge-Split-Rule,coalitional game is formulated among distributed secondary users with cooperative receive beamforming.Then,an alter-native optimization method is used to obtain the op-timized beamforming and power allocation schemes by applying the up-downlink duality.The simulation results demonstrate the effectiveness of our proposed scheme in improving the SU’s secrecy rate and system utility while guaranteeing PU’s interference thresh-old.展开更多
The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one fea...The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one feasible cellular user(FCU)can share its RB with multiple V2V pairs.The problem is first formulated as a nonconvex mixed-integer nonlinear programming(MINLP)problem with constraint of the maximum interference power in the FCU links.Using the game theory,two coalition formation algorithms are proposed to accomplish V2V link partitioning and FCU selection,where the transferable utility functions are introduced to minimize the interference among the V2V links and the FCU links for the optimal RB allocation.The successive convex approximation(SCA)is used to transform the original problem into a convex one and the Lagrangian dual method is further applied to obtain the optimal transmit power of the V2V links.Finally,numerical results demonstrate the efficiency of the proposed resource allocation algorithm in terms of the system sum-rate.展开更多
In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a fa...In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a family of games, called the almost null family, in which we determined more recently a game where the Shapley Value and the Egalitarian Allocations are colalitional rational. The Egalitarian Nonseparable Contribution is another value for cooperative transferable utilities games (TU games), showing how to allocate fairly the win of the grand coalition, in case that this has been formed. In the present paper, we solve the similar problem for this new value: given a nonnegative vector representing the Egalitarian Nonseparable Contribution of a TU game, find out a game in which the Egalitarian Nonseparable Contribution is kept the same, but it is colalitional rational. The new game will belong to the family of almost null games in the Inverse Set, relative to the Shapley Value, and it is proved that the threshold of coalitional rationality will be higher than the one for the Shapley Value. The needed previous results are shown in the introduction, the second section is devoted to the main results, while in the last section are discussed remarks and connected problems. Some numerical examples are illustrating the procedure of finding the new game.展开更多
In the Inverse Set relative to a Semivalue, we are looking for a new game for which the Semivalue of the original game is coalitional rational. The problem is solved by means of the Power Game of the given game. The p...In the Inverse Set relative to a Semivalue, we are looking for a new game for which the Semivalue of the original game is coalitional rational. The problem is solved by means of the Power Game of the given game. The procedures of building the new game, as well as the case of the Banzhaf Value are illustrated by means of some examples.展开更多
In the theory of cooperative transferable utilities games, (TU games), the Efficient Values, that is those which show how the win of the grand coalition is shared by the players, may not be a good solution to give a f...In the theory of cooperative transferable utilities games, (TU games), the Efficient Values, that is those which show how the win of the grand coalition is shared by the players, may not be a good solution to give a fair outcome to each player. In an earlier work of the author, the Inverse Problem has been stated and explicitely solved for the Shapley Value and for the Least Square Values. In the present paper, for a given vector, which is the Shapley Value of a game, but it is not coalitional rational, that is it does not belong to the Core of the game, we would like to find out a new game with the Shapley Value equal to the a priori given vector and for which this vector is also in the Core of the game. In other words, in the Inverse Set relative to the Shapley Value, we want to find out a new game, for which the Shapley Value is coalitional rational. The results show how such a game may be obtained, and some examples are illustrating the technique. Moreover, it is shown that beside the original game, there are always other games for which the given vector is not in the Core. The similar problem is solved for the Least Square Values.展开更多
Coalitional skill games (CSGs) are a simple model of cooperation in an uncertain environment where each agent has a set of skills that are required to accomplish a variety of tasks and each task requires a set of sk...Coalitional skill games (CSGs) are a simple model of cooperation in an uncertain environment where each agent has a set of skills that are required to accomplish a variety of tasks and each task requires a set of skills to be completed, but each skill is very hard to be quantified and can only be qualitatively expressed. Thus far, many computational questions surrounding CSGs have been studied. However, to the best of our knowledge, the coalition structure generation problem (CSGP), as a central issue of CSGs, is extremely challenging and has not been well solved. To this end, two different computational intelligence algorithms are herein evaluated: binary particle swarm optimization (BPSO) and binary differential evolution (BDE). In particular, we develop the two stochastic search algorithms with two-dimensional binary encoding and corresponding heuristic for individual repairs. After that, we discuss some fundamental properties of the proposed heuristic. Finally, we compare the improved BPSO and BDE with the state-of-the-art algorithms for solving CSGP in CSGs. The experimental results show that our algorithms can find the same near optimal solutions with the existing approaches but take extremely short time, especially under the large problem size.展开更多
Aiming at the coexistence of cellular network and wireless fidelity(WiFi)network,a coalitional game-based WiFi offloading algorithm in heterogeneous networks is proposed.Firstly,this paper defines the user fairness ut...Aiming at the coexistence of cellular network and wireless fidelity(WiFi)network,a coalitional game-based WiFi offloading algorithm in heterogeneous networks is proposed.Firstly,this paper defines the user fairness utility function that comprehensively considers the user communication rate,cost and delay.Then,the coalitional game model including two types of coalitions is constructed.To control the transfer of users among coalitions,a coalition transfer criterion that simultaneously improves the user's individual utility and the total system utility is proposed.In addition,this paper presents a channel allocation scheme that ensures full utilization of system resources to maximize the total utility of the system.The simulation results show that the proposed offloading algorithm can reasonably utilize the resources of cellular network and WiFi network,and improve the utility of users and system.展开更多
With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games an...With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games and the symmetric coalitional Banzhaf value for traditional games with a coalition structure.Two axiomatic systems are established:One is enlightened by the characterizations for the symmetric coalitional Banzhaf value,and the other is inspired by the characterizations for the Banzhaf value.展开更多
This paper investigates the existence of coalitional equilibria for coalitional abstract economies with nonordered preferences.Accordingly,the authors give a fuzzy extension of the coalitional equilibrium existence th...This paper investigates the existence of coalitional equilibria for coalitional abstract economies with nonordered preferences.Accordingly,the authors give a fuzzy extension of the coalitional equilibrium existence theorem.The main result is illustrated with applications to coalitional abstract economies with payoff functions,strong Nash equilibria and absolute optimal solutions.展开更多
With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization p...With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization problem inmulti-microgrid cooperation,a cooperative game strategy based on the Nash bargainingmodel is proposed,aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization.First,each microgrid is regarded as a game participant,and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed,targeting the minimization of total operational cost under constraints such as power balance and energy storage limits.Second,the Nash bargaining solution is introduced as the benefit allocation scheme to ensure individual rationality and coalition stability.Finally,theAlternating Direction Method of Multipliers(ADMM)is employed to decompose the centralized optimization problem into distributed subproblems for iterative solution,thereby reducing communication burden and protecting privacy.Case studies reveal that the operational costs of the threemicrogrids are reduced by 26.28%,19.00%,and 17.19%,respectively,and the overall renewable energy consumption rate is improved by approximately 66.11%.展开更多
The emergence of multi-access edge computing(MEC)aims at extending cloud computing capabilities to the edge of the radio access network.As the large-scale internet of things(IoT)services are rapidly growing,a single e...The emergence of multi-access edge computing(MEC)aims at extending cloud computing capabilities to the edge of the radio access network.As the large-scale internet of things(IoT)services are rapidly growing,a single edge infrastructure provider(EIP)may not be sufficient to handle the data traffic generated by these services.Most of the existing work addressed the computing resource shortage problem by optimizing tasks schedule,whereas others overcome such issue by placing computing resources on demand.However,when considering a multiple EIPs scenario,an urgent challenge is how to generate a coalition structure to maximize each EIP’s gain with a suitable price for computing resource block corresponding to a container.To this end,we design a scheme of EIPs collaboration with a market price for containers under a scenario that considers a collection of service providers(SPs)with different budgets and several EIPs distributed in geographical locations.First,we bring in the net profit market price model to generate a more reasonable equilibrium price and select the optimal EIPs for each SP by a convex program.Then we use a mathematical model to maximize EIP’s profits and form stable coalitions between EIPs by a distributed coalition formation algorithm.Numerical results demonstrate that our proposed collaborative scheme among EIPs enhances EIPs’gain and increases users’surplus.展开更多
The analysis refers to the interwar years in Europe.We distinguish four types of coalitions here:(a)Coalitions with other democratic parties,led by a predominant party and most common in multi-party democratic states....The analysis refers to the interwar years in Europe.We distinguish four types of coalitions here:(a)Coalitions with other democratic parties,led by a predominant party and most common in multi-party democratic states.(b)Bringing in ideological opponents on the parts of overarching highly credible national figures such as King George V did in Britain in 1931 in calling upon the charismatic Labour Party leader MacDonald to form a coalition with the still dominant but ailing Conservative Party.(c)The outbidding of more radical political parties by former center parties towards the right or left.One such outcome comes about when this is having a temporary effect only,until the next election is won within the family of democratic parties.Yet,when outbidding is trump the electorate easily might go for the hardest outbidding contender not to be taken over by even greater extremist parties.This process for the analysis of political terrorism and its intention to instigate fear amongst the“neutral”population explains to a large extent why considerable portions of the population are going to side with the most extreme challengers.This is for two reasons,one is pure fear to be out-mastered,the other one is rational choice just to avoid this.(d)The other outcome as to outbidding occurs when the democratic national consensus formation that is still underlying all these processes in normal times is wiped out in times of crises.Democratic national consensus is being lost vis-à-vis a new anti-democratic national consensus formation.Several other theoretical arguments and historical experiences are touched upon.展开更多
6月11日,在2025SNEC展会期间,通威正式宣布加入全球太阳能理事会(Global Solar Council,GSC)、国际可再生能源机构行动联盟(IRENA Coalition for Action)及太阳能管理倡议(Solar Stewardship Initiative,SSI)。这是通威首次同时亮相全...6月11日,在2025SNEC展会期间,通威正式宣布加入全球太阳能理事会(Global Solar Council,GSC)、国际可再生能源机构行动联盟(IRENA Coalition for Action)及太阳能管理倡议(Solar Stewardship Initiative,SSI)。这是通威首次同时亮相全球三大新能源权威组织,再次彰显通威在全球能源转型和可持续发展领域的战略雄心与积极实践。展开更多
The delivery of the natural gas obtained by drilling, fracking and sending the product to consumers is done usually in two phases: in the first phase, the gas is collected from all wells spread on a large area, and be...The delivery of the natural gas obtained by drilling, fracking and sending the product to consumers is done usually in two phases: in the first phase, the gas is collected from all wells spread on a large area, and belonging to several companies, and is sent to a depot owned by the city;then, in the second phase, another company is taking the gas on a network of ducts belonging to the city, along the streets to the neighborhoods and the individual consumers. The first phase is managed by the gas producing companies on the ducts owned by each company, possibly also on some public ducts. In this paper, we discuss only this first phase, to show why the benefits of these companies depend on the cooperation of the producers, and further, how a fair allocation of the total gas obtained, to the drilling companies, is computed. Following the model of flow games, we generate a cooperative transferable utilities game, as shown in the first section, and in this game any efficient value gives an allocation of benefits to the owners of ducts in the total network. However, it may well happen that the chosen value is not coalitional rational, in the game, that is, it does not belong to the Core of the game. By using the results obtained in an earlier work of the author, sketched in the second section, we show in the last section how the same allocation may be associated to a new game, which has the corresponding value a coalitional rational value. An example of a three person flow game shows the game generation, as well as the procedure to be used for obtaining the new game in which the same value, a Shapley Value, will give a coalitional rational allocation.展开更多
In a cooperative transferable utilities game, the allocation of the win of the grand coalition is an Egalitarian Allocation, if this win is divided into equal parts among all players. The Inverse Set relative to the S...In a cooperative transferable utilities game, the allocation of the win of the grand coalition is an Egalitarian Allocation, if this win is divided into equal parts among all players. The Inverse Set relative to the Shapley Value of a game is a set of games in which the Shapley Value is the same as the initial one. In the Inverse Set, we determined a family of games for which the Shapley Value is also a coalitional rational value. The Egalitarian Allocation of the game is efficient, so that in the set called the Inverse Set relative to the Shapley Value, the allocation is the same as the initial one, but may not be coalitional rational. In this paper, we shall find out in the same family of the Inverse Set, a subfamily of games with the Egalitarian Allocation is also a coalitional rational value. We show some relationship between the two sets of games, where our values are coalitional rational. Finally, we shall discuss the possibility that our procedure may be used for solving a very similar problem for other efficient values. Numerical examples show the procedure to get solutions for the efficient values.展开更多
The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clusterin...The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.展开更多
This study analyzes the cooperative coalition problem for formation scheduling based on incomplete information. A multi-agent cooperative coalition framework is developed to optimize the formation scheduling problem i...This study analyzes the cooperative coalition problem for formation scheduling based on incomplete information. A multi-agent cooperative coalition framework is developed to optimize the formation scheduling problem in a decentralized manner. The social class differentiation mech- anism and role-assuming mechanism are incorporated into the framework, which, in turn, ensures that the multi-agent system (MAS) evolves in the optimal direction. Moreover, a further differen- tiation pressure can be achieved to help MAS escape from local optima. A Bayesian coalition nego- tiation algorithm is constructed, within which the Harsanyi transformation is introduced to transform the coalition problem based on incomplete information to the Bayesian-equivalent coali- tion problem based on imperfect information. The simulation results suggest that the distribution of agents' expectations of other agents' unknown information approximates to the true distribution after a finite set of generations. The comparisons indicate that the MAS cooperative coalition algo- rithm produces a significantly better utility and possesses a more effective capability of escaping from local optima than the proposal-engaged marriage algorithm and the Simulated Annealing algorithm.展开更多
文摘In cooperative game theory, a central problem is to allocate fairly the win of the grand coalition to the players who agreed to cooperate and form the grand coalition. Such allocations are obtained by means of values, having some fairness properties, expressed in most cases by groups of axioms. In an earlier work, we solved what we called the Inverse Problem for Semivalues, in which the main result was offering an explicit formula providing the set of all games with an a priori given Semivalue, associated with a given weight vector. However, in this set there is an infinite set of games for which the Semivalues are not coalitional rational, perhaps not efficient, so that these are not fair practical solutions of the above fundamental problem. Among the Semivalues, coalitional rational solutions for the Shapley Value and the Banzhaf Value have been given in two more recent works. In the present paper, based upon a general potential basis, relative to Semivalues, for a given game and a given Semivalue, we solve the connected problem: in the Inverse Set, find out a game with the same Semivalue, which is also coalitional rational. Several examples will illustrate the corresponding numerical technique.
文摘The effective classification of urban domestic waste is the key to achieve a “waste-free city” and provides an essential guarantee for resource utilization. This article takes a coalitional game perspective to study the dilemmas in urban domestic waste separation from the cooperative interaction of residents, government, and enterprises. The study finds that urban domestic waste classification in China is currently facing many problems, focusing on: 1) insufficient consensus among residents, 2) shortage of input funds, 3) corporate profitability difficulties, 4) weak policy constraints, and 5) difficulties in integrating goals. In this regard, each participating body still needs to focus on collective interests, coalitional games, break the dilemma society, and promote the long-term management of urban domestic waste.
文摘In this paper,the physical layer se-cure transmission in multi-antenna multi-user cogni-tive internet-of-thing(IoT)network is investigated,where the coalitional game based joint beamform-ing and power control scheme is proposed to im-prove the achievable security of cognitive IoT de-vices.Specifically,the secondary network consisting of a muti-antenna secondary transmitter,multiple sec-ondary users(SUs),is allowed to access the licensed spectrum resource of primary user(PU)with underlay approach in the presence of an unauthorized eaves-dropper.Based on the Merge-Split-Rule,coalitional game is formulated among distributed secondary users with cooperative receive beamforming.Then,an alter-native optimization method is used to obtain the op-timized beamforming and power allocation schemes by applying the up-downlink duality.The simulation results demonstrate the effectiveness of our proposed scheme in improving the SU’s secrecy rate and system utility while guaranteeing PU’s interference thresh-old.
基金the National Natural Scientific Foundation of China(61771291,61571272)the Major Science and Technological Innovation Project of Shandong Province(2020CXGC010109).
文摘The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one feasible cellular user(FCU)can share its RB with multiple V2V pairs.The problem is first formulated as a nonconvex mixed-integer nonlinear programming(MINLP)problem with constraint of the maximum interference power in the FCU links.Using the game theory,two coalition formation algorithms are proposed to accomplish V2V link partitioning and FCU selection,where the transferable utility functions are introduced to minimize the interference among the V2V links and the FCU links for the optimal RB allocation.The successive convex approximation(SCA)is used to transform the original problem into a convex one and the Lagrangian dual method is further applied to obtain the optimal transmit power of the V2V links.Finally,numerical results demonstrate the efficiency of the proposed resource allocation algorithm in terms of the system sum-rate.
文摘In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a family of games, called the almost null family, in which we determined more recently a game where the Shapley Value and the Egalitarian Allocations are colalitional rational. The Egalitarian Nonseparable Contribution is another value for cooperative transferable utilities games (TU games), showing how to allocate fairly the win of the grand coalition, in case that this has been formed. In the present paper, we solve the similar problem for this new value: given a nonnegative vector representing the Egalitarian Nonseparable Contribution of a TU game, find out a game in which the Egalitarian Nonseparable Contribution is kept the same, but it is colalitional rational. The new game will belong to the family of almost null games in the Inverse Set, relative to the Shapley Value, and it is proved that the threshold of coalitional rationality will be higher than the one for the Shapley Value. The needed previous results are shown in the introduction, the second section is devoted to the main results, while in the last section are discussed remarks and connected problems. Some numerical examples are illustrating the procedure of finding the new game.
文摘In the Inverse Set relative to a Semivalue, we are looking for a new game for which the Semivalue of the original game is coalitional rational. The problem is solved by means of the Power Game of the given game. The procedures of building the new game, as well as the case of the Banzhaf Value are illustrated by means of some examples.
文摘In the theory of cooperative transferable utilities games, (TU games), the Efficient Values, that is those which show how the win of the grand coalition is shared by the players, may not be a good solution to give a fair outcome to each player. In an earlier work of the author, the Inverse Problem has been stated and explicitely solved for the Shapley Value and for the Least Square Values. In the present paper, for a given vector, which is the Shapley Value of a game, but it is not coalitional rational, that is it does not belong to the Core of the game, we would like to find out a new game with the Shapley Value equal to the a priori given vector and for which this vector is also in the Core of the game. In other words, in the Inverse Set relative to the Shapley Value, we want to find out a new game, for which the Shapley Value is coalitional rational. The results show how such a game may be obtained, and some examples are illustrating the technique. Moreover, it is shown that beside the original game, there are always other games for which the given vector is not in the Core. The similar problem is solved for the Least Square Values.
基金This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61573125 and 61371155, and the Anhui Provincial Natural Science Foundation of China under Grant Nos. 1608085MF131, 1508085MF132, and 1508085QF129.
文摘Coalitional skill games (CSGs) are a simple model of cooperation in an uncertain environment where each agent has a set of skills that are required to accomplish a variety of tasks and each task requires a set of skills to be completed, but each skill is very hard to be quantified and can only be qualitatively expressed. Thus far, many computational questions surrounding CSGs have been studied. However, to the best of our knowledge, the coalition structure generation problem (CSGP), as a central issue of CSGs, is extremely challenging and has not been well solved. To this end, two different computational intelligence algorithms are herein evaluated: binary particle swarm optimization (BPSO) and binary differential evolution (BDE). In particular, we develop the two stochastic search algorithms with two-dimensional binary encoding and corresponding heuristic for individual repairs. After that, we discuss some fundamental properties of the proposed heuristic. Finally, we compare the improved BPSO and BDE with the state-of-the-art algorithms for solving CSGP in CSGs. The experimental results show that our algorithms can find the same near optimal solutions with the existing approaches but take extremely short time, especially under the large problem size.
基金supported by the National Natural Science Foundation of China (61971239,61631020)
文摘Aiming at the coexistence of cellular network and wireless fidelity(WiFi)network,a coalitional game-based WiFi offloading algorithm in heterogeneous networks is proposed.Firstly,this paper defines the user fairness utility function that comprehensively considers the user communication rate,cost and delay.Then,the coalitional game model including two types of coalitions is constructed.To control the transfer of users among coalitions,a coalition transfer criterion that simultaneously improves the user's individual utility and the total system utility is proposed.In addition,this paper presents a channel allocation scheme that ensures full utilization of system resources to maximize the total utility of the system.The simulation results show that the proposed offloading algorithm can reasonably utilize the resources of cellular network and WiFi network,and improve the utility of users and system.
基金supported by the National Natural Science Foundation of China under Grant Nos.71201089,71201110,71271217,and 71271029the Natural Science Foundation Youth Project of Shandong Province,China under Grant No.ZR2012GQ005+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20111101110036the Program for New Century Excellent Talents in University of China under Grant No.NCET-12-0541
文摘With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games and the symmetric coalitional Banzhaf value for traditional games with a coalition structure.Two axiomatic systems are established:One is enlightened by the characterizations for the symmetric coalitional Banzhaf value,and the other is inspired by the characterizations for the Banzhaf value.
基金supported by the National Natural Science Foundation of China under Grant No.11501349Graduate Innovation Foundation sponsored by Shanghai University of Finance and Economics under Grant No.CXJJ-2017-375.
文摘This paper investigates the existence of coalitional equilibria for coalitional abstract economies with nonordered preferences.Accordingly,the authors give a fuzzy extension of the coalitional equilibrium existence theorem.The main result is illustrated with applications to coalitional abstract economies with payoff functions,strong Nash equilibria and absolute optimal solutions.
基金funded by StateGrid Beijing Electric PowerCompany Technology Project,grant number 520210230004.
文摘With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization problem inmulti-microgrid cooperation,a cooperative game strategy based on the Nash bargainingmodel is proposed,aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization.First,each microgrid is regarded as a game participant,and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed,targeting the minimization of total operational cost under constraints such as power balance and energy storage limits.Second,the Nash bargaining solution is introduced as the benefit allocation scheme to ensure individual rationality and coalition stability.Finally,theAlternating Direction Method of Multipliers(ADMM)is employed to decompose the centralized optimization problem into distributed subproblems for iterative solution,thereby reducing communication burden and protecting privacy.Case studies reveal that the operational costs of the threemicrogrids are reduced by 26.28%,19.00%,and 17.19%,respectively,and the overall renewable energy consumption rate is improved by approximately 66.11%.
基金supported by National Natural Science Foundation of China(No.6206020135)Key Research and Development Program of Gansu Province(No.20YF8GA123)+1 种基金Gansu Provincial Department of Education University Faculty Innovation Fund Project(No.2024B-059)Youth Science Fund Project of Lanzhou Jiaotong University(No.1200061307).
文摘The emergence of multi-access edge computing(MEC)aims at extending cloud computing capabilities to the edge of the radio access network.As the large-scale internet of things(IoT)services are rapidly growing,a single edge infrastructure provider(EIP)may not be sufficient to handle the data traffic generated by these services.Most of the existing work addressed the computing resource shortage problem by optimizing tasks schedule,whereas others overcome such issue by placing computing resources on demand.However,when considering a multiple EIPs scenario,an urgent challenge is how to generate a coalition structure to maximize each EIP’s gain with a suitable price for computing resource block corresponding to a container.To this end,we design a scheme of EIPs collaboration with a market price for containers under a scenario that considers a collection of service providers(SPs)with different budgets and several EIPs distributed in geographical locations.First,we bring in the net profit market price model to generate a more reasonable equilibrium price and select the optimal EIPs for each SP by a convex program.Then we use a mathematical model to maximize EIP’s profits and form stable coalitions between EIPs by a distributed coalition formation algorithm.Numerical results demonstrate that our proposed collaborative scheme among EIPs enhances EIPs’gain and increases users’surplus.
文摘The analysis refers to the interwar years in Europe.We distinguish four types of coalitions here:(a)Coalitions with other democratic parties,led by a predominant party and most common in multi-party democratic states.(b)Bringing in ideological opponents on the parts of overarching highly credible national figures such as King George V did in Britain in 1931 in calling upon the charismatic Labour Party leader MacDonald to form a coalition with the still dominant but ailing Conservative Party.(c)The outbidding of more radical political parties by former center parties towards the right or left.One such outcome comes about when this is having a temporary effect only,until the next election is won within the family of democratic parties.Yet,when outbidding is trump the electorate easily might go for the hardest outbidding contender not to be taken over by even greater extremist parties.This process for the analysis of political terrorism and its intention to instigate fear amongst the“neutral”population explains to a large extent why considerable portions of the population are going to side with the most extreme challengers.This is for two reasons,one is pure fear to be out-mastered,the other one is rational choice just to avoid this.(d)The other outcome as to outbidding occurs when the democratic national consensus formation that is still underlying all these processes in normal times is wiped out in times of crises.Democratic national consensus is being lost vis-à-vis a new anti-democratic national consensus formation.Several other theoretical arguments and historical experiences are touched upon.
文摘6月11日,在2025SNEC展会期间,通威正式宣布加入全球太阳能理事会(Global Solar Council,GSC)、国际可再生能源机构行动联盟(IRENA Coalition for Action)及太阳能管理倡议(Solar Stewardship Initiative,SSI)。这是通威首次同时亮相全球三大新能源权威组织,再次彰显通威在全球能源转型和可持续发展领域的战略雄心与积极实践。
文摘The delivery of the natural gas obtained by drilling, fracking and sending the product to consumers is done usually in two phases: in the first phase, the gas is collected from all wells spread on a large area, and belonging to several companies, and is sent to a depot owned by the city;then, in the second phase, another company is taking the gas on a network of ducts belonging to the city, along the streets to the neighborhoods and the individual consumers. The first phase is managed by the gas producing companies on the ducts owned by each company, possibly also on some public ducts. In this paper, we discuss only this first phase, to show why the benefits of these companies depend on the cooperation of the producers, and further, how a fair allocation of the total gas obtained, to the drilling companies, is computed. Following the model of flow games, we generate a cooperative transferable utilities game, as shown in the first section, and in this game any efficient value gives an allocation of benefits to the owners of ducts in the total network. However, it may well happen that the chosen value is not coalitional rational, in the game, that is, it does not belong to the Core of the game. By using the results obtained in an earlier work of the author, sketched in the second section, we show in the last section how the same allocation may be associated to a new game, which has the corresponding value a coalitional rational value. An example of a three person flow game shows the game generation, as well as the procedure to be used for obtaining the new game in which the same value, a Shapley Value, will give a coalitional rational allocation.
文摘In a cooperative transferable utilities game, the allocation of the win of the grand coalition is an Egalitarian Allocation, if this win is divided into equal parts among all players. The Inverse Set relative to the Shapley Value of a game is a set of games in which the Shapley Value is the same as the initial one. In the Inverse Set, we determined a family of games for which the Shapley Value is also a coalitional rational value. The Egalitarian Allocation of the game is efficient, so that in the set called the Inverse Set relative to the Shapley Value, the allocation is the same as the initial one, but may not be coalitional rational. In this paper, we shall find out in the same family of the Inverse Set, a subfamily of games with the Egalitarian Allocation is also a coalitional rational value. We show some relationship between the two sets of games, where our values are coalitional rational. Finally, we shall discuss the possibility that our procedure may be used for solving a very similar problem for other efficient values. Numerical examples show the procedure to get solutions for the efficient values.
基金supported by the National Natural Science Foundation of China(61573017 61703425)the Aeronautical Science Fund(20175796014)
文摘The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.
基金supported by the National Natural Science Foundation of China(No.61039001)the National Science and Technology Support Program of China(No.2011BAH24B10)
文摘This study analyzes the cooperative coalition problem for formation scheduling based on incomplete information. A multi-agent cooperative coalition framework is developed to optimize the formation scheduling problem in a decentralized manner. The social class differentiation mech- anism and role-assuming mechanism are incorporated into the framework, which, in turn, ensures that the multi-agent system (MAS) evolves in the optimal direction. Moreover, a further differen- tiation pressure can be achieved to help MAS escape from local optima. A Bayesian coalition nego- tiation algorithm is constructed, within which the Harsanyi transformation is introduced to transform the coalition problem based on incomplete information to the Bayesian-equivalent coali- tion problem based on imperfect information. The simulation results suggest that the distribution of agents' expectations of other agents' unknown information approximates to the true distribution after a finite set of generations. The comparisons indicate that the MAS cooperative coalition algo- rithm produces a significantly better utility and possesses a more effective capability of escaping from local optima than the proposal-engaged marriage algorithm and the Simulated Annealing algorithm.