期刊文献+
共找到908,993篇文章
< 1 2 250 >
每页显示 20 50 100
Spatio-Temporal Variations in Co-Occurrence Patterns of Fish Communities in Haizhou Bay, China: Null Model Analysis 被引量:1
1
作者 WANG Jiao ZHANG Chongliang +3 位作者 XUE Ying CHEN Yong REN Yiping XU Binduo 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第6期1497-1506,共10页
Co-occurrence pattern of fish species plays an important role in understanding the spatio-temporal structure and the stability of fish community.Species coexistence may vary with time and space.The co-occurrence patte... Co-occurrence pattern of fish species plays an important role in understanding the spatio-temporal structure and the stability of fish community.Species coexistence may vary with time and space.The co-occurrence patterns of fish species were examined using the C-score under fixed-fixed null model for fish communities in spring and autumn over different years in the Haizhou Bay,China.The results showed that fish assemblages in the whole bay had non-random patterns in spring and autumn over different years.However,the fish co-occurrence patterns were different for the northern and southern fish assemblages in spring and autumn.The northern fish assemblage showed structured pattern,whereas the southern assemblage were randomly assembled in spring.The co-occurrence patterns of fish communities were relatively stable over different years,and the number of significant species pairs in northern assemblage was more than that in the southern assemblage.Environmental heterogeneity played an important role in determining the distributions of fish species that formed significant species pairs,which might affect the co-occurrence patterns of northern and southern assemblages further in the Haizhou Bay. 展开更多
关键词 FISH COMMUNITY Haizhou BAY NULL model analysis SPECIES co-occurrence pattern
暂未订购
Artificial intelligence on diabetic retinopathy diagnosis: an automatic classification method based on grey level co-occurrence matrix and naive Bayesian model 被引量:6
2
作者 Kai Cao Jie Xu Wei-Qi Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第7期1158-1162,共5页
AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix metho... AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients. 展开更多
关键词 GREY level co-occurrence matrix Bayesian textures artificial INTELLIGENCE receiver operating characteristiccurve DIABETIC RETINOPATHY
原文传递
Neighborhood co-occurrence modeling in 3D point cloud segmentation
3
作者 Jingyu Gong Zhou Ye Lizhuang Ma 《Computational Visual Media》 SCIE EI CSCD 2022年第2期303-315,共13页
A significant performance boost has been achieved in point cloud semantic segmentation by utilization of the encoder-decoder architecture and novel convolution operations for point clouds.However,co-occurrence relatio... A significant performance boost has been achieved in point cloud semantic segmentation by utilization of the encoder-decoder architecture and novel convolution operations for point clouds.However,co-occurrence relationships within a local region which can directly influence segmentation results are usually ignored by current works.In this paper,we propose a neighborhood co-occurrence matrix(NCM)to model local co-occurrence relationships in a point cloud.We generate target NCM and prediction NCM from semantic labels and a prediction map respectively.Then,Kullback-Leibler(KL)divergence is used to maximize the similarity between the target and prediction NCMs to learn the co-occurrence relationship.Moreover,for large scenes where the NCMs for a sampled point cloud and the whole scene differ greatly,we introduce a reverse form of KL divergence which can better handle the difference to supervise the prediction NCMs.We integrate our method into an existing backbone and conduct comprehensive experiments on three datasets:Semantic3D for outdoor space segmentation,and S3DIS and ScanNet v2 for indoor scene segmentation.Results indicate that our method can significantly improve upon the backbone and outperform many leading competitors. 展开更多
关键词 3D vision point cloud co-occurrence relation modeling semantic segmentation
原文传递
Birds'co-occurrence is mediated by diet,habitat type,and anthropogenic disturbances in Ghana's Central Region
4
作者 Collins Ayine Nsor Michael Perry-Amissah +4 位作者 John Nkrumah Mensah Samuel Boadi Micheal Asigbase Louis Addae-Wireko Rockson Acolats 《Avian Research》 2025年第3期412-422,共11页
Understanding the fundamental drivers of large-scale species co-occurrence is a critical issue in ecology and conservation research. Here, we assessed foraging guilds, habitat type and disturbances as drivers of bird ... Understanding the fundamental drivers of large-scale species co-occurrence is a critical issue in ecology and conservation research. Here, we assessed foraging guilds, habitat type and disturbances as drivers of bird species co-occurrence in Ghana's Central Region over six months. Birds were sampled in 120 points across six different habitat types (farmland, forest reserve, urban area, coastal savannah, wetland, and mangrove), using the point-centred count technique. In total, 4060 individuals belonging to 216 species were recorded across all six habitat types. We found that co-occurring species were more similar in their foraging behaviour and habitat association. About 60% of the birds were found to co-occur randomly, 15% co-occurred negatively, and 25% co-occurred positively. Carnivores like the Black Heron (Egretta ardesiaca) and Spur-winged Lapwing (Vanellus spinosus) randomly co-occurred with other guild groups and were dominant in the mangroves and wetlands. Frugivores from forest reserves had only a 25% chance of randomly co-occurring with other birds and about a 60% chance of positively co-occurring with other birds. Our findings suggest that foraging guilds and habitat type are major factors driving bird co-occurrence and community assemblages in this West African suburban region. 展开更多
关键词 Community assembly Competition Foraging guilds Habitat.preference NMDS Species co-occurrence
在线阅读 下载PDF
Spatial environmental heterogeneity of ocean currents affects pelagic ciliate community structure,assembly,and co-occurrence network complexity in the Scotia Sea,Antarctic
5
作者 Tianjing Shi Furong Cao +5 位作者 Wangxinze Shu Yurou Jiang Eun Jin Yang Qian Liu Mingjian Liu Yong Jiang 《Marine Life Science & Technology》 2025年第4期757-778,共22页
The complex current systems of the Southern Ocean play a critical role in shaping the heterogeneity and distinctiveness of Antarctic habitats.Nonetheless,how Antarctic water masses influence ciliates,one of the most c... The complex current systems of the Southern Ocean play a critical role in shaping the heterogeneity and distinctiveness of Antarctic habitats.Nonetheless,how Antarctic water masses influence ciliates,one of the most common groups of protozoa in polar regions,remains largely unknown.The present study investigated how the ciliate communities are affected by com-plex Southern Ocean currents by analyzing the diversity distributions,community assembly mechanisms,and co-occurrence networks of ciliates across three distinct water masses in the Scotia Sea.The findings reveal that the hydrography of the Scotia Sea significantly affects the spatial patterns of planktonic ciliates,primarily through the combination of temperature,salinity,and depth.In contract to surface waters(Antarctic Surface Water and Antarctic Circumpolar Current),ciliates inhab-iting deep waters(Circumpolar Deep Water)exhibit stronger and more direct correlations with the environment parameters,alongside greater network stability.Community assembly in surface and deep-water masses is governed by stochastic and deterministic processes,respectively.Compared to other Antarctic regions documented in previous studies,the Scotia Sea demonstrated the lowest alpha diversity indices for ciliates while harboring the highest number of endemic species.A detailed re-evaluation of Antarctic ciliate community structure in the Antarctic from prior research offers valuable insights into how dynamic ocean currents shape the ecological dynamics of ciliate communities,thus providing a broader understanding of the environmental changes impacting polar marine ecosystems. 展开更多
关键词 Ciliated protists co-occurrence network Microbial community assembly Polar water masses Southern Ocean
原文传递
Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer
6
作者 Kai-Feng Yang Sheng-Jie Li +1 位作者 Jun Xu Yong-Bin Zheng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1571-1581,共11页
BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ... BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions. 展开更多
关键词 Colorectal cancer Synchronous liver metastasis Gray-level co-occurrence matrix Machine learning algorithm Prediction model
暂未订购
Modeling of Precipitation over Africa:Progress,Challenges,and Prospects
7
作者 A.A.AKINSANOLA C.N.WENHAJI +21 位作者 R.BARIMALALA P.-A.MONERIE R.D.DIXON A.T.TAMOFFO M.O.ADENIYI V.ONGOMA I.DIALLO M.GUDOSHAVA C.M.WAINWRIGHT R.JAMES K.C.SILVERIO A.FAYE S.S.NANGOMBE M.W.POKAM D.A.VONDOU N.C.G.HART I.PINTO M.KILAVI S.HAGOS E.N.RAJAGOPAL R.K.KOLLI S.JOSEPH 《Advances in Atmospheric Sciences》 2026年第1期59-86,共28页
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha... In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain. 展开更多
关键词 RAINFALL MONSOON climate modeling CORDEX CMIP6 convection-permitting models
在线阅读 下载PDF
Do Higher Horizontal Resolution Models Perform Better?
8
作者 Shoji KUSUNOKI 《Advances in Atmospheric Sciences》 2026年第1期259-262,共4页
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(... Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)]. 展开更多
关键词 enhancing model resolution refinement data assimilation systems section climate model climate projection higher horizontal resolution seasonal forecasting simulation seasonal migration rain bands model resolution
在线阅读 下载PDF
An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model
9
作者 Adel Saad Assiri 《Computers, Materials & Continua》 2026年第1期1783-1803,共21页
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ... Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies. 展开更多
关键词 Customer churn prediction deep learning RBiLSTM DROPOUT baseline models
在线阅读 下载PDF
When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation
10
作者 Noreen Fuentes Janeth Ugang +4 位作者 Narcisan Galamiton Suzette Bacus Samantha Shane Evangelista Fatima Maturan Lanndon Ocampo 《Computers, Materials & Continua》 2026年第1期2137-2162,共26页
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use... This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities. 展开更多
关键词 Self-moderation user-generated content k-means clustering TODIM large language models
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
11
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
Face-Pedestrian Joint Feature Modeling with Cross-Category Dynamic Matching for Occlusion-Robust Multi-Object Tracking
12
作者 Qin Hu Hongshan Kong 《Computers, Materials & Continua》 2026年第1期870-900,共31页
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba... To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions. 展开更多
关键词 Cross-category dynamic binding joint feature modeling face-pedestrian association multi object tracking occlusion robustness
在线阅读 下载PDF
Motion In-Betweening via Frequency-Domain Diffusion Model
13
作者 Qiang Zhang Shuo Feng +2 位作者 Shanxiong Chen Teng Wan Ying Qi 《Computers, Materials & Continua》 2026年第1期275-296,共22页
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame... Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction. 展开更多
关键词 Motion generation diffusion model frequency domain human motion synthesis self-attention network 3D motion interpolation
在线阅读 下载PDF
Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system
14
作者 Seda Demir Gereon R.Fink +1 位作者 Maria A.Rueger Stefan J.Blaschke 《Neural Regeneration Research》 2026年第4期1264-1276,共13页
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn... Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation. 展开更多
关键词 noninvasive brain stimulation preclinical modeling STROKE transcranial direct current stimulation transcranial magnetic stimulation traumatic brain injury
暂未订购
Novel therapies for myasthenia gravis:Translational research from animal models to clinical application
15
作者 Benedetta Sorrenti Christian Laurini +4 位作者 Luca Bosco Camilla Mirella Maria Strano Adele Ratti Yuri Matteo Falzone Stefano Carlo Previtali 《Neural Regeneration Research》 2026年第5期1834-1848,共15页
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ... Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors. 展开更多
关键词 acetylcholine receptor(AChR) animal models B-cell depletion biological therapies COMPLEMENT IMMUNOTHERAPY muscle-specific kinase(Mu SK) neonatal Fc receptor
暂未订购
Human cerebral organoids:Complex,versatile,and human-relevant models of neural development and brain diseases
16
作者 Raquel Coronel Rosa González-Sastre +8 位作者 Patricia Mateos-Martínez Laura Maeso Elena Llorente-Beneyto Sabela Martín-Benito Viviana S.Costa Gagosian Leonardo Foti Ma Carmen González-Caballero Victoria López-Alonso Isabel Liste 《Neural Regeneration Research》 2026年第3期837-854,共18页
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb... The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering. 展开更多
关键词 assembloids BIOENGINEERING challenges disease modeling drug screening and toxicology human brain organoids human pluripotent stem cells neurodegenerative diseases NEURODEVELOPMENT VASCULARIZATION
暂未订购
基于co-occurrence相似度的聚类集成方法 被引量:3
17
作者 凌光 王明春 冯嘉毅 《计算机应用》 CSCD 北大核心 2011年第2期441-445,461,共6页
首先提出了一种基于属性值的co-occurrence相似度概念,通过对其进一步的研究,提出了3个等价性表述;然后对属性值之间的co-occurrence相似度进行引申,给出了数据对象之间co-occurrence相似度的定义,并将其成功应用到聚类集成方法中。利用... 首先提出了一种基于属性值的co-occurrence相似度概念,通过对其进一步的研究,提出了3个等价性表述;然后对属性值之间的co-occurrence相似度进行引申,给出了数据对象之间co-occurrence相似度的定义,并将其成功应用到聚类集成方法中。利用co-occurrence相似度在计算某个初始聚类结果中数据对象之间的相似度时,充分考虑了其他初始聚类结果和该初始聚类结果之间的相互影响和联系。实验表明,基于co-occurrence相似度的聚类集成(CSCE)方法能有效识别数据之间的细微结构,有助于提高聚类集成的效果。 展开更多
关键词 聚类集成 binary相似度 co-occurrence相似度 基于簇相似的划分算法 基于co-occurrence相似度的聚类集成
在线阅读 下载PDF
基于加权co-occurrence矩阵的聚类集成算法
18
作者 柏建普 杨亚坤 《电子科技》 2012年第2期19-22,共4页
聚类集成是数据挖掘研究的一个热点。它是利用同一数据集的多个聚类划分集成在一起,以提高聚类分析的性能。当前相关研究大多没有考虑进行集成的聚类成员的质量,因此较差的成员会对集成结果产生不良影响。文中提出了一种基于加权co-occu... 聚类集成是数据挖掘研究的一个热点。它是利用同一数据集的多个聚类划分集成在一起,以提高聚类分析的性能。当前相关研究大多没有考虑进行集成的聚类成员的质量,因此较差的成员会对集成结果产生不良影响。文中提出了一种基于加权co-occurrence矩阵的聚类集成算法(WCSCE)。该方法首先计算出聚类成员基于属性值的co-occurrence矩阵,然后对聚类成员的质量进行简单评价并赋予权重,生成加权co-occurrence矩阵,进而产生集成结果。最后通过实验验证了该算法的有效性,并提高了聚类质量。 展开更多
关键词 聚类集成 co-occurrence矩阵 权重
在线阅读 下载PDF
Combined effects of habitat and interspec ificinteraction define co-occurrence patterns of sympatric Galliformes 被引量:7
19
作者 Lijun Chen Zufei Shu +3 位作者 Wutao Yao Yong Ma Wenhong Xiao Xiaoqun Huang 《Avian Research》 CSCD 2019年第3期344-356,共13页
Background:Disentangling the relative importance of environmental variables and interspecific interaction in modulating co-occurrence patterns of sympatric species is essential for understanding the mechanisms of comm... Background:Disentangling the relative importance of environmental variables and interspecific interaction in modulating co-occurrence patterns of sympatric species is essential for understanding the mechanisms of community assembly and biodiversity. For the two sympatric Galliformes, Silver Pheasants (Lophura nycthemera) and Whitenecklaced Partridges (Arborophila gingica), we know little about the role of habitat use and interspecific interactions in modulating their coexistence. Methods:We adopted a probabilistic approach incorporating habitat preference and interspecific interaction using occupancy model to account for imperfect detection,and used daily activity pattern analysis to investigate the cooccurrence pattern of these two sympatric Galliformes in wet and dry seasons. Results: We found that the detection probability of Silver Pheasant and White-necklaced Partridge were related to habitat variables and interspecific interaction. The presence of Silver Pheasant increases the detection probability of White-necklaced Partridge in both the wet and dry season. However, the presence of White-necklaced Partridges increases the detection probability of Silver Pheasants in the wet season, but decreases the probability in the dry season. Further, Silver Pheasants were detected frequently in the sites of high values of enhanced vegetable index (EVI) in both the wet and dry season, and in sites away from human residential settlement in the wet season. Whitenecklaced partridges were mainly detected in low EVI sites. The site use probabilities of two Galliformes were best explained by habitat variables, Silver Pheasants and White-necklaced Partridges preferred steeper areas during the wet and dry season. Both species mainly occurred in low EVI areas during the wet season and occupied sites away from the resident settlement during the dry season. Moreover, the site use probabilities of two species had opposite relationships with forest canopy coverage. Silver Pheasants preferred areas with high forest canopy coverage whereas White-necklaced Partridges preferred low forest canopy coverage in the dry season, and vice versa in the wet season. Species interaction factor (SIF)corroborated weak evidence of the dependence of the site use of one species on that of the other in the either dry or wet season.Temporally, high overlapping of daily activity pattern indicated no significantly temporal niche differentiation between sympatric Galliformes in both wet and dry seasons. Conclusions:Our results demonstrated that the presence of two species influenced the detection probability interactively and there was no temporal partitioning in activity time between Silver Pheasants and White-necklaced Partridges in the wet and dry seasons.The site use probability of two Galliformes was best explained by habitat variables, especially the forest canopy coverage.Therefore, environmental variables and interspecific interaction are the leading drivers regulating the detection and site use probability and promoting co-occurrence of Silver Pheasants and White-necklaced Partridges. 展开更多
关键词 Arborophila gingica co-occurrence HABITAT preference INTERSPECIFIC interaction Lophura nycthemera OCCUPANCY model
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
20
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部