High cracking susceptibility of Al-Li alloys with Ti/Ce B6addition is thoroughly suppressed in laser powder bed fusion(LPBF)processing of Ti/Ce co-modified 2195 alloys at relatively high scan speeds,while the cracking...High cracking susceptibility of Al-Li alloys with Ti/Ce B6addition is thoroughly suppressed in laser powder bed fusion(LPBF)processing of Ti/Ce co-modified 2195 alloys at relatively high scan speeds,while the cracking suppression mechanism and phase formation in these composites are not clarified.In this work,microstructure evolution and mechanical performance of the LPBF-fabricated Ti/Ce co-modified 2195 are investigated to reveal their cracking suppression and strengthening mechanisms.The results show that apparent grain refinement of the composites is ascribed to high supercooling from rapid formation of constitutional supercooling zone in front of solid–liquid interfaces by high-Q-value Ti solute,and heterogeneous nucleation of in situ formed Al3Ti and Al11Ce3precipitates.Their synergistic interactions promote formation of fine equiaxed grains and thus inhibit crack initiation.The composites exhibit high microhardness of 100±5HV0.2,nano-hardness of 1.6±0.1 GPa and elastic modulus of 97±3 GPa,where the elastic modulus increases by 27%and 31%compared to those of LPBF-processed and conventionally manufactured 2195 alloys,respectively.A tensile strength of 336 MPa and an elongation of 3%are obtained from in-situ synchrotron X-ray diffraction measurement.The improved properties are derived from grain refinement and Orowan strengthening.Based on the optimal processing parameter and composition,a bracket component filled with lattice structures is designed and manufactured with good manufacturing quality and processing accuracy.展开更多
Carbon and few-layer MoS2 nanosheets co- modified TiO2 nanocomposites (defined as MoS2-C@TiO2) were prepared through a facile one-step pyrolysis reaction technique. In this unique nanostructure, the TiO2 nanosh- eet...Carbon and few-layer MoS2 nanosheets co- modified TiO2 nanocomposites (defined as MoS2-C@TiO2) were prepared through a facile one-step pyrolysis reaction technique. In this unique nanostructure, the TiO2 nanosh- eets with stable structure serve as the backbones, and carbon coating and few-layer MoS2 tightly adhere onto the surface of the TiO2. It needs to be pointed out that the carbon coating improves the overall electronic conductivity and the few-layer MoS2 facilitates the diffusion of lithium ions and offers more active sites for lithium-ion storage. As a result, when evaluated as lithium-ion battery anodes, the MoS2-C@TiO2 nanocomposites exhibit markedly enhanced lithium storage capability compared with pure TiO2. A high specific capacity of 180 mA.h.g-1 has been achieved during the preliminary cycles, and the specific capacity can maintain 160 mA.h.g-1 at a high current density of 1C (1C=167 mA.g-1) even after 300 discharge/ charge cycles, indicating the great potential of the MoS2- C@TiO2 on energy storage.展开更多
SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measur...SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH_(3)-SCR activity with higher than 90% NOx conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NOX conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_(2).The characteristic results suggest that the high deNOX performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH_(3).展开更多
Aqueous rechargeable Ni-Fe batteries exhibit unique advantages in large-scale energy storage thanks to their affordability,safety,and reliability.However,their limited energy density and Coulombic efficiency stem from...Aqueous rechargeable Ni-Fe batteries exhibit unique advantages in large-scale energy storage thanks to their affordability,safety,and reliability.However,their limited energy density and Coulombic efficiency stem from unfavorable OH^(−)adsorption capability and low electrochemical activity of Fe sites,result in electrode kinetic delays for Fe anodes.Here,we report Mn and S co-modified FeOOH(MSFF)nanosheets as an advanced anode in Ni-Fe batteries,synthesized from a facile one-step surface-redox-etching method at room temperature.Based on the strong electronic coupling effect between Mn and S atoms,such MSFF anode presents fast electron transport capability,enhanced OH^(−)-adsorption capability,and redox reactivity.Specifically,the MSFF anode can achieve a high areal capacity of 2 mAh cm^(−2)at 10 mA cm^(−2),which retains a staggering 96%of the initial capacity after undergoing 9000 cycles at a higher current density of 30 mA cm^(−2).In addition,the assembled Ni-Fe battery can provide a capacity of 0.85 mAh cm^(−2)at 16 mA cm^(−2),significantly outperforming most recently reported aqueous rechargeable batteries.This work may offer an innovative and feasible approach for modulating the local electronic structure of high-performance Ni-Fe battery electrode materials.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52205382,52225503)National Key Research and Development Program(No.2023YFB4603300)+3 种基金Key Research and Development Program of Jiangsu Province(Nos.BE2022069,BZ2024019)National Natural Science Foundation of China for Creative Research Groups(No.51921003)International Joint Laboratory of Sustainable Manufacturing,Ministry of Education and the Fundamental Research Funds for the Central Universities(NG2024014)Postgraduate Research&Practice Innovation Program of NUAA(xcxjh20230616)。
文摘High cracking susceptibility of Al-Li alloys with Ti/Ce B6addition is thoroughly suppressed in laser powder bed fusion(LPBF)processing of Ti/Ce co-modified 2195 alloys at relatively high scan speeds,while the cracking suppression mechanism and phase formation in these composites are not clarified.In this work,microstructure evolution and mechanical performance of the LPBF-fabricated Ti/Ce co-modified 2195 are investigated to reveal their cracking suppression and strengthening mechanisms.The results show that apparent grain refinement of the composites is ascribed to high supercooling from rapid formation of constitutional supercooling zone in front of solid–liquid interfaces by high-Q-value Ti solute,and heterogeneous nucleation of in situ formed Al3Ti and Al11Ce3precipitates.Their synergistic interactions promote formation of fine equiaxed grains and thus inhibit crack initiation.The composites exhibit high microhardness of 100±5HV0.2,nano-hardness of 1.6±0.1 GPa and elastic modulus of 97±3 GPa,where the elastic modulus increases by 27%and 31%compared to those of LPBF-processed and conventionally manufactured 2195 alloys,respectively.A tensile strength of 336 MPa and an elongation of 3%are obtained from in-situ synchrotron X-ray diffraction measurement.The improved properties are derived from grain refinement and Orowan strengthening.Based on the optimal processing parameter and composition,a bracket component filled with lattice structures is designed and manufactured with good manufacturing quality and processing accuracy.
基金financially supported by the National Natural Science Foundation of China(No.51472177)the China-EU Science and Technology Cooperation Project(No.SQ2013ZOA100006)
文摘Carbon and few-layer MoS2 nanosheets co- modified TiO2 nanocomposites (defined as MoS2-C@TiO2) were prepared through a facile one-step pyrolysis reaction technique. In this unique nanostructure, the TiO2 nanosh- eets with stable structure serve as the backbones, and carbon coating and few-layer MoS2 tightly adhere onto the surface of the TiO2. It needs to be pointed out that the carbon coating improves the overall electronic conductivity and the few-layer MoS2 facilitates the diffusion of lithium ions and offers more active sites for lithium-ion storage. As a result, when evaluated as lithium-ion battery anodes, the MoS2-C@TiO2 nanocomposites exhibit markedly enhanced lithium storage capability compared with pure TiO2. A high specific capacity of 180 mA.h.g-1 has been achieved during the preliminary cycles, and the specific capacity can maintain 160 mA.h.g-1 at a high current density of 1C (1C=167 mA.g-1) even after 300 discharge/ charge cycles, indicating the great potential of the MoS2- C@TiO2 on energy storage.
基金supported by the National Natural Science Foundation of China (51708309)Natural Science Foundation of Heilongjiang Province+1 种基金China (QC2017065)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2018106)。
文摘SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH_(3)-SCR activity with higher than 90% NOx conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NOX conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_(2).The characteristic results suggest that the high deNOX performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH_(3).
基金financially supported by National Natural Science Foundation of China(Nos.52407242,52162025)Specific Research Fund of the Innovation Platform for Academicians of Hainan Province(No.YSPTZX202123).
文摘Aqueous rechargeable Ni-Fe batteries exhibit unique advantages in large-scale energy storage thanks to their affordability,safety,and reliability.However,their limited energy density and Coulombic efficiency stem from unfavorable OH^(−)adsorption capability and low electrochemical activity of Fe sites,result in electrode kinetic delays for Fe anodes.Here,we report Mn and S co-modified FeOOH(MSFF)nanosheets as an advanced anode in Ni-Fe batteries,synthesized from a facile one-step surface-redox-etching method at room temperature.Based on the strong electronic coupling effect between Mn and S atoms,such MSFF anode presents fast electron transport capability,enhanced OH^(−)-adsorption capability,and redox reactivity.Specifically,the MSFF anode can achieve a high areal capacity of 2 mAh cm^(−2)at 10 mA cm^(−2),which retains a staggering 96%of the initial capacity after undergoing 9000 cycles at a higher current density of 30 mA cm^(−2).In addition,the assembled Ni-Fe battery can provide a capacity of 0.85 mAh cm^(−2)at 16 mA cm^(−2),significantly outperforming most recently reported aqueous rechargeable batteries.This work may offer an innovative and feasible approach for modulating the local electronic structure of high-performance Ni-Fe battery electrode materials.