期刊文献+
共找到380篇文章
< 1 2 19 >
每页显示 20 50 100
Promotion effect of Ce and Ta co-doping on the NH_(3)-SCR performance over V_(2)O_(5)/TiO_(2)catalyst 被引量:1
1
作者 Long Liu Xin Shen +4 位作者 Zhihua Lian Chunxi Lin Ying Zhu Wenpo Shan Hong He 《Journal of Environmental Sciences》 2025年第4期332-339,共8页
NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.A... NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity. 展开更多
关键词 NH_(3)-SCR Vanadia-based catalysts Synergistic effect co-doping Low temperature
原文传递
Effects of Zr^(4+)and Hf^(4+)co-doping on luminescence and scintillation properties of LuYAG:Pr^(3+)single crystals grown by micro-pulling-down technique
2
作者 Yufeng Tong Yunyun Li +6 位作者 Qingsong Song Jie Xu Xiaodong Xu Mikhail Korzhik Jun Xu Kheirreddine Lebbou Yuntao Wu 《Journal of Rare Earths》 2025年第4期701-706,I0003,共7页
In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method.... In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method.Under radiation excitation,scintillation properties such as light yield,decay time,and afterglow level were measured and compared to non-co-doped LuYAG:Pr^(3+).The positive effect of Zr and Hf co-doping is to significantly shorten the scintillation time response.The negative effect is the decrease of scintillation yield and increase of afterglow.We propose that the positively charged defects induced by Zr/Hf co-doping are responsible for the spatial correlated traps around Pr centers causing the shortened scintillation decay via non-radiative recombination processes,and the deep traps as well for the prolonged afterglow. 展开更多
关键词 LuYAG:Pr SCINTILLATORS co-doping ZIRCONIUM HAFNIUM μ-PD
原文传递
Insights into magnesium and titanium co-doping to stabilize the O3-type NaCrO_(2) cathode material for sodium-ion batteries
3
作者 Wenya Li Yuanqi Yang +8 位作者 Yuqing Yang Min Liang Huizi Li Xi Ke Liying Liu Yan Sun Chunsheng Li Zhicong Shi Su Ma 《Chinese Chemical Letters》 2025年第10期612-615,共4页
The development of high-performance cathode materials is critical to the practical application of sodiumion batteries(SIBs).O3-type NaCrO_(2)(NCO)is one of the most competitive cathodes,but it suffers from rapid capac... The development of high-performance cathode materials is critical to the practical application of sodiumion batteries(SIBs).O3-type NaCrO_(2)(NCO)is one of the most competitive cathodes,but it suffers from rapid capacity decay caused by severe irreversible structural evolution.An Mg-Ti co-doped Na_(0.99)Cr_(0.95)Mg_(0.02)Ti_(0.03)O_(2)(NCO-MT)cathode material is designed and synthesized via a facile solid-state reaction to enhance the cyclability of NCO.A capacity retention of 71.6%after 2500 cycles with the capacity fade rate of 0.011%per cycle is achieved for NCO-MT at 5 C,which is attributed to the highly reversible crystal structure during cycling.Our findings offer a novel insight into the high-performance O3-type layered cathode materials for SIBs and are beneficial to promote the development of high-rate SIBs. 展开更多
关键词 Sodium-ion batteries O3-type NaCrO_(2) Mg-Ti co-doping Cycling stability Structural reversibility
原文传递
The synergistic effect of non-compensated Cu/N co-doping and graphene enhances the dual-channel generation of H_(2)O_(2) over TiO_(2) photocatalysts
4
作者 Qianqian Shen Chenlong Dong +3 位作者 Shilong Feng Xueli Zhang Qiurong Li Jinbo Xue 《Chinese Journal of Catalysis》 2025年第11期252-264,共13页
Modulating the electronic structure of a photocatalyst and constructing spatially separated redox sites are key strategies for achieving the photocatalytic dual-channel generation of H_(2)O_(2).In this study,a graphen... Modulating the electronic structure of a photocatalyst and constructing spatially separated redox sites are key strategies for achieving the photocatalytic dual-channel generation of H_(2)O_(2).In this study,a graphene-modified non-compensated Cu/N-co-doped titanium dioxide(Cu-N-TiO_(2)/rGO)photocatalyst was designed for the efficient synthesis of H_(2)O_(2) via a dual-channel pathway.Precise modulation of the TiO_(2) conduction band position was achieved through the synergistic coupling of Cu 3d orbitals hybridized with Ti 3d orbitals and hybridization of N 2p orbitals with O 2p orbitals.This approach significantly improved the utilization of sunlight while satisfying the redox potential requirements.Cu doping not only promoted the formation of oxygen vacancies but also reduced the formation of Ti^(3+)ions,the photogenerated charge recombination centers.The non-compensated doping of N effectively increased the solubility of Cu^(2+)ions in the titanium dioxide lattice,enhanced the adsorption of hydroxyl radical intermediates,and created conditions for the subsequent hydroxyl radical combinations promoting the generation of H_(2)O_(2).In addition,the introduction of highly conductive graphene improved the interfacial carrier separation efficiency while realizing the spatial separation of redox sites,creating conditions for dual-channel reactions.The experimental results showed that the H_(2)O_(2) yield of Cu-N-TiO_(2)/rGO under simulated sunlight reached 1266.7μmol/L,which was 25.2 times higher than that of pristine TiO_(2).This study elucidated the synergistic mechanism of the energy band structure modulation and interfacial optimization,which provided a new idea for the design of dual-channel H_(2)O_(2) production photocatalysts. 展开更多
关键词 Photocatalytic production of H_(2)O_(2) Dual channel Modulation of energy band structure Cu/N co-doping
在线阅读 下载PDF
Regulating interfacial chemistry and kinetic behaviors of F/Mo co-doping Ni-rich layered oxide cathode for long-cycling lithium-ion batteries over-20°C-60°C 被引量:1
5
作者 Siqi Guan Lin Tao +9 位作者 Pei Tang Ruopian Fang Huize Wu Nan Piao Huicong Yang Guangjian Hu Xin Geng Lixiang Li Baigang An Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期449-457,共9页
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit... Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability. 展开更多
关键词 Anion-cation co-doping Wide temperature operation Ni-richlayered cathode Phase transition Surface/interface
在线阅读 下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation 被引量:1
6
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
在线阅读 下载PDF
Strategically designing and fabricating nitrogen and sulfur Co-doped g-C_(3)N_(4) for accelerating photocatalytic H_(2) evolution 被引量:1
7
作者 Haitao Wang Lianglang Yu +2 位作者 Jiahe Peng Jing Zou Jizhou Jiang 《Journal of Materials Science & Technology》 2025年第5期111-119,共9页
Doping engineering is an effective strategy for graphitic carbon nitride(g-C_(3)N_(4))to improve its photocat-alytic hydrogen evolution reaction(HER)performance.In this work,a novel nitrogen and sulfur co-doped g-C_(3... Doping engineering is an effective strategy for graphitic carbon nitride(g-C_(3)N_(4))to improve its photocat-alytic hydrogen evolution reaction(HER)performance.In this work,a novel nitrogen and sulfur co-doped g-C_(3)N_(4)(N,S-g-C_(3)N_(4))is elaborately designed on the basis of theoretical predictions of first-principle density functional theory(DFT).The calculated Gibbs free energy of adsorbed hydrogen(ΔGH∗)for N,S-g-C_(3)N_(4) at the N-doping active sites is extremely close to zero(0.01 eV).Inspired by the theoretical predictions,the N,S-g-C_(3)N_(4) is successfully fabricated through ammonia-rich pyrolysis synthesis strategy,in which ammonia is in-situ obtained by pyrolyzing melamine.Subsequent characterizations indicate that the N,S-g-C_(3)N_(4) possesses high specific surface area,outstanding light utilization,good hydrophilicity,and efficient carrier transfer efficiency.Consequently,the N,S-g-C_(3)N_(4) displays an extremely high H2 evolution rate of 8269.9μmol g−1 h−1,achieves an apparent quantum efficiency(AQE)of 3.24%,and also possesses outsatnding durability.Theoretical calculations further demonstrate that N and S dopants can not only introduce doping energy level to reduce the band gap,but also induce charge redistribution to facilitate hydrogen adsorption,thus promoting the photocatalytic HER process.Moreover,femtosecond transient absorption(fs-TA)spectroscopy further corroborates the efficient photogenerated carrier transport of N,S-g-C_(3)N_(4).This research highlights a promising and reliable strategy to achieve superior photocatalytic activity,and exhibits significant guidance for precise designing high-efficiency photocatalysts. 展开更多
关键词 Theoretical predictions g-C_(3)N_(4) N and S co-doping Photocatalytic H_(2)evolution
原文传递
Boosting Photocatalytic Performance of Cu-Mn Co-doped CeO_(2) Nanoparticles for Tetracycline Degradation
8
作者 XU Rongqi MI Jianxin +5 位作者 WANG Shulin XU Man ZHU Li BAI Lei TANG Dandan LEI Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期42-48,共7页
Cu-Mn co-doped CeO_(2) photocatalyst was successfully synthesized by the sol-gel method to assess its capability in degrading tetracycline.XRD and TEM results showed that Cu and Mn were successfully co-doped into CeO_... Cu-Mn co-doped CeO_(2) photocatalyst was successfully synthesized by the sol-gel method to assess its capability in degrading tetracycline.XRD and TEM results showed that Cu and Mn were successfully co-doped into CeO_(2) without forming heterostructure,XPS and photoelectrochemical results revealed that Mn ions doping amplified the generation of photo-induced charge carriers,while Cu ions doping significantly facilitated the interfacial charge transfer process.Notably,the optimized Cu3Mn2CeO_(2) nanoparticles exhibited the highest TC removal efficiency,achieved a rate of 78.18%and maintained a stable cycling performance. 展开更多
关键词 PHOTOCATALYST co-dopED charge separation water treatment
原文传递
Na and O Co-doped Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution
9
作者 CHEN Libo SHENG Ying +3 位作者 WU Ming SONG Jiling JIAN Jian SONG Erhong 《无机材料学报》 北大核心 2025年第5期552-560,I0011,I0012,共11页
Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),... Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples. 展开更多
关键词 Na and O co-doped carbon nitride synergistic effect visible light photocatalytic hydrogen evolution
在线阅读 下载PDF
A B,N co-doped carbon nanotube array with anchored MnO_(2) nanosheets as a flexible cathode for aqueous zinc-ion batteries
10
作者 YUAN Yan-bing ZHAO Zong-bin +3 位作者 BI Hong-hui ZHANG Run-meng WANG Xu-zhen QIU Jie-shan 《新型炭材料(中英文)》 北大核心 2025年第1期200-210,共11页
For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of e... For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling.We report the production of a novel flexible electrode material,by anchoring MnO_(2) nanosheets on a B,N co-doped carbon nanotube ar-ray(BNCNTs)grown on carbon cloth(BNCNTs@MnO_(2)),which was fabricated by in-situ pyrolysis and hydrothermal growth.The generated BNCNTs were strongly bonded to the surface of the car-bon fibers in the carbon cloth which provides both excellent elec-tron transport and ion diffusion,and improves the stability and dur-ability of the cathode.Importantly,the BNCNTs offer more active sites for the hydrothermal growth of MnO_(2),ensuring a uniform dis-tribution.Electrochemical tests show that BNCNTs@MnO_(2) delivers a high specific capacity of 310.7 mAh g^(−1) at 0.1 A g^(−1),along with excellent rate capability and outstanding cycling stability,with a 79.7% capacity retention after 8000 cycles at 3 A g^(−1). 展开更多
关键词 B N co-doped carbon nanotube Manganese dioxide Flexible electrode Aqueous zinc-ion batteries
在线阅读 下载PDF
Synergistic integration of hierarchical structure and oxygen vacancy engineering in core-shelled Ni and Zn co-doped Co_(3)O_(4) microsphere for efficient detection of triethylamine gas
11
作者 Wei Ding Fengrui Zhu +3 位作者 Siyu Zheng Yan Chao Yin Qiqi Zhao Jie Hu 《Rare Metals》 2025年第9期6426-6441,共16页
This work presents a hierarchical yolk-shell NiZn-Co_(3)O_(4)sphere with abundant oxygen vacancy by utilizing structure optimization and composition regulation for efficient detection of triethylamine(TEA)gas.A compar... This work presents a hierarchical yolk-shell NiZn-Co_(3)O_(4)sphere with abundant oxygen vacancy by utilizing structure optimization and composition regulation for efficient detection of triethylamine(TEA)gas.A comparative exploration of TEA gas sensing characterization for different Co_(3)O_(4)-based sensors is conducted systematically.The result shows that the sensor based on the NiZn–Co_(3)O_(4)HCSS displays the highest sensing response of 42.5 at a working temperature of 180°C.In particular,the Ni Zn–Co_(3)O_(4)HCSS device possesses a fast responserecovery speed,excellent anti-humidity and outstanding long-term stability of up to 40 days to TEA gas.The improved TEA gas sensing property can be attributed to the intriguing hierarchical core–shell architecture and abundant oxygen vacancy induced by NiZn co-doping.Moreover,to study the sensing mechanism in detail,the adsorption behavior and charge transfer phenomenon between OV–NiZn–Co_(3)O_(4)(110)and TEA molecule is carried out by the density functional theory(DFT).This work demonstrates an outstanding performance of Ni and Zn co-doped hierarchical core–shell Co_(3)O_(4)in TEA detection by combining theoretical and experimental investigations into mechanisms for optimized TEA gas molecule sensing. 展开更多
关键词 Core-shell structure Gas sensor co-doping Oxygen vacancy
原文传递
Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery
12
作者 Jiaojiao Liang Youming Peng +6 位作者 Zhichao Xu Yufei Wang Menglong Liu Xin Liu Di Huang Yuehua Wei Zengxi Wei 《Chinese Chemical Letters》 2025年第1期585-590,共6页
Flexible energy storage devices have been paid much attention and adapts to apply in various fields.Benefiting from the active sites of boron(B)and phosphorus(P)doping materials,co-doped carbon materials are widely us... Flexible energy storage devices have been paid much attention and adapts to apply in various fields.Benefiting from the active sites of boron(B)and phosphorus(P)doping materials,co-doped carbon materials are widely used in energy storage devices for the enhanced electrochemical performance.Herein,B and P co-doped flexible carbon nanofibers with nitrogen-rich(B-P/NC)are investigated with electro-spinning for sodium-ion battery.The flexible of binderless B-P/NC with annealing of 600℃(B-P/NC-600)exhibits the remarkable performance for the robust capacity of 200 mAh/g at 0.1 A/g after 500 cycles and a durable reversible capacity of 160 m Ah/g even at 1 A/g after 12,000 cycles,exhibiting the equally commendable stability of flexible B-P/NC-600.In addition,B-P/NC-600 delivers the reversible capacity of265 m Ah/g with the test temperature of 60℃.More importantly,the flexible B-P/NC-600 is fabricated as anode for the whole battery,delivering the capacity of 90 m Ah/g at 1 A/g after 200 cycles.Meanwhile,theoretical calculation further verified that boron and phosphorus co-doping can improve the adsorption capacity of nitrogen carbon materials.The favorable performance of flexible B-P/NC-600 can be ascribed to the nitrogen-rich carbon nanofibers with three-dimensional network matrix for the more active site of boron and phosphorus co-doping.Our work paves the way for the improvement of flexible anodes and wide-operating temperature of sodium-ion batteries by doping approach of much heteroatom. 展开更多
关键词 co-dopED FLEXIBLE Carbon nanofibers Durable Sodium-ion batteries
原文传递
F-B Co-Doped TiO_(2)Nanosheets Bounded with Highly Active Anatase(001)Facets for Improved Photocatalytic Hydrogen Evolution
13
作者 ZHANG Mengyao WEI Li LIU Lei 《Journal of Donghua University(English Edition)》 2025年第5期457-465,共9页
F-B co-doped TiO_(2)nanosheets with exposed anatase(001)facets were synthesized via a one-pot solvothermal method,and their photocatalytic hydrogen evolution performance was investigated.Characterization results confi... F-B co-doped TiO_(2)nanosheets with exposed anatase(001)facets were synthesized via a one-pot solvothermal method,and their photocatalytic hydrogen evolution performance was investigated.Characterization results confirm that this method effectively promotes the growth of the highly active anatase(001)facets and enhances visible and infrared light absorption while inducing oxygen vacancies.Under optimal conditions,the hydrogen evolution reaches 20.57μmol after 10 h of ultraviolet-visible(UV-Vis)light irradiation,exceeding the commercial TiO_(2)nanoparticles Degussa P25 by more than 10 times.These findings highlight the potential of F-B co-doped TiO_(2)nanosheets for efficient photocatalysis. 展开更多
关键词 F-B co-dope TiO_(2) photocatalysis active facet oxygen vacancy
在线阅读 下载PDF
Co-doped cryptomelane-type manganese oxide in situ grown on a nickel foam substrate for high humidity ozone decomposition
14
作者 Haoyuan Liang Xu Wang +1 位作者 Hui Wang Zhenping Qu 《Journal of Environmental Sciences》 2025年第2期529-540,共12页
Monolithic catalysts with excellent O_(3)catalytic decomposition performance were prepared by in situ loading of Co-doped KMn_(8)O_(16)on the surface of nickel foam.The triple-layer structure with Co-doped KMn_(8)O_(1... Monolithic catalysts with excellent O_(3)catalytic decomposition performance were prepared by in situ loading of Co-doped KMn_(8)O_(16)on the surface of nickel foam.The triple-layer structure with Co-doped KMn_(8)O_(16)/Ni6MnO_(8)/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO_(4)to Co(NO_(3))_(2)·6H_(2)O precursors.Importantly,the formed Ni6MnO_(8)structure between KMn_(8)O_(16)and nickel foam during in situ synthesis process effectively protected nickel foam from further etching,which significantly enhanced the reaction stability of catalyst.The optimum amount of Co doping in KMn_(8)O_(16)was available when the molar ratio of Mn to Co species in the precursor solution was 2:1.And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity,thus creating outstanding O_(3)decomposition activity.The O_(3)conversion under dry conditions and relative humidity of 65%,90%over a period of 5 hr was 100%,94%and 80%with the space velocity of 28,000 hr^(−1),respectively.The in situ constructed Co-doped KMn_(8)O_(16)/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process,which provided an opportunity for the design of monolithic catalyst for O_(3)catalytic decomposition. 展开更多
关键词 co-doped cryptomelane-type MANGANESE O_(3)decomposition High humidity Nickel foam Monolithic catalyst
原文传递
Synthesis and applications of B,N co-doped carbons for zinc-based energy storage devices
15
作者 Hangwen Zheng Ziqian Wang +4 位作者 HuiJie Zhang Jing Lei Rihui Li Jian Yang Haiyan Wang 《Chinese Chemical Letters》 2025年第3期70-82,共13页
Aqueous zinc-based energy storage devices(ZESDs)have garnered considerable interest because of their high specific capacity,abundant zinc reserves,excellent safety,and environmental friendliness.In recent years,variou... Aqueous zinc-based energy storage devices(ZESDs)have garnered considerable interest because of their high specific capacity,abundant zinc reserves,excellent safety,and environmental friendliness.In recent years,various types of boron,nitrogen co-doped carbon(BNC)materials have been developed to improve electrochemical performance of ZESDs.To promote the advancement of these technologies,we herein give a comprehensive review of the progress in BNC materials for ZESDs.The different synthetic methods employed in the preparation of BNC materials,including direct carbonization,template method,chemical vapor deposition,hydrothermal method,etc.,are summarized.These methods play a vital role in tailoring the structure,composition,and properties of BNC materials to optimize their performance in energy storage applications.Furthermore,some key achievements of BNC materials in zinc-air batteries and zinc-ion hybrid supercapacitors are elaborated.Lastly,future challenges and development directions of BNC materials in ZESDs are prospected.This comprehensive review could serve as a valuable resource in the energy storage field,providing insights into the potential of BNC materials in zinc-based energy storage technologies. 展开更多
关键词 B N co-doped carbon Synthetic strategy Applications Zinc-air batteries Zinc-ion hybrid supercapacitors
原文传递
Ferrihydrite/B,N co-doped biochar composites enhancing tetracycline degradation:The crucial role of boron incorporation in Fe(III)reduction and oxygen activation
16
作者 Yujiang Huang Tong Hu +1 位作者 Sichen Li Wenjun Zhou 《Journal of Environmental Sciences》 2025年第8期252-263,共12页
Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were... Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were developed for enhancing the degradation of a model pollutant,tetracycline(TC),merely by airborne O_(2).Fh/B(3)NC showed excellent O_(2)activation activity for efficient TC degradation with a apparent TC degradation rate of 5.54,6.88,and 22.15 times that of B(3)NC,Fh,and raw BCs,respectively,where 1O_(2)and H_(2)O_(2)were identified as the dominant ROS for TC degradation.The B incorporation into the carbon lattice of Fh/B(3)NC promoted the generation of electron donors,sp2 C and the reductive B species,hence boosting Fe(III)reduction and 1O_(2)generation.O_(2)adsorption was enhanced due to the positively charged adsorption sites(C-B+and N-C+).And 1O_(2)was generated via Fe(II)catalyzed low-efficient successive one-electron transfer(O_(2)→O_(2)·−→1O_(2),H_(2)O_(2)),as well as biochar catalyzed high-efficient two-electron transfer(O_(2)→H_(2)O_(2)→1O_(2))that does not involve.O_(2)−as the intermediate.Moreover,Fh/B,N co-doped biochar showed a wide pH range,remarkable anti-interference capabilities,and effective detoxification.These findings shed new light on the development of environmentally benign BCs materials capable of degradading organic pollutants. 展开更多
关键词 Ferrihydrite/biochar B N co-doped biochar Oxygen activation Singlet oxygen TETRACYCLINE
原文传递
Fabrication of Tb/Eu co-doped borosilicate glasses for white-light LED and broadband photodetection
17
作者 Hong Jia Yingying Wang +9 位作者 Yi Long Xuying Niu Hui Zhou Jie Yang Yuquan Yuan Yanfei Hu Xiaoyun Xu Xiaofeng Liu Feng Peng Zaijin Fang 《Journal of Rare Earths》 2025年第7期1355-1363,共9页
We successfully prepared a series of rare-earth doped borosilicate glasses using the melt-quenching method,and carefully investigated the luminescent properties and the spectral modulation of Tb/Eucodoped borosilicate... We successfully prepared a series of rare-earth doped borosilicate glasses using the melt-quenching method,and carefully investigated the luminescent properties and the spectral modulation of Tb/Eucodoped borosilicate glasses under UV(200-400 nm)excitation.The results show that the prepared samples have the characteristics of broadband response,excellent transparency and tunable luminescence.By adjusting the excitation wavelength,the emissions of Tb^(3+),Eu^(2+)and Eu^(3+)ions are observed,which exhibit yellow-green,blue,red color and multi-color even white emissions,respectively.Moreover,the energy transfer between Tb^(3+)and Eu^(3+)ions in the codoped glasses is confirmed.Tb^(3+)absorbs a large number of solar-blind light,transfers to Eu^(3+)and results in intense visible emission in a wide waveband range.This makes the Tb/Eu co-doped glass a desirable candidate for solar-blind light detections.The photodetection system was built and shows a strong and stable response to the UV light of 210-400 nm.Due to broad detection range,high sensitivity and stability,our results offer strong implications for the development of photodetection device for diverse applications. 展开更多
关键词 Rare earth ions Tb/Eu co-doped Borosilicate glass PHOTODETECTORS
原文传递
HeLa cell cytotoxicity of K−Na co-doped layered-MnO_(2)
18
作者 Qin CHEN Jin-quan YANG Jue LIU 《Transactions of Nonferrous Metals Society of China》 2025年第8期2726-2733,共8页
K−Na co-doped δ-MnO_(2)(KNMOH)nanoflowers were synthesized,and their cytotoxic effects against HeLa cervical cancer cells were evaluated.The KNMOH exhibited significant dose-and time-dependent cytotoxicity at concent... K−Na co-doped δ-MnO_(2)(KNMOH)nanoflowers were synthesized,and their cytotoxic effects against HeLa cervical cancer cells were evaluated.The KNMOH exhibited significant dose-and time-dependent cytotoxicity at concentrations of 50 and 100μg/mL.After 24 h of incubation treatment,cell viability decreased to(36.8±6.5)% and(33.4±6.4)%at 50 and 100μg/mL,respectively.With extended exposure to 48 h,cell viability was(45.2±2.3)%and(32.3±2.8)%at the same concentrations.Phase-contrast microscopy revealed characteristic morphological changes including cell shrinkage and membrane blebbing formation,indicative of cell death.These findings demonstrate the potential of KNMOH nanoflowers as a cytotoxic agent for cervical cancer applications and provide a foundation for further mechanistic studies. 展开更多
关键词 K−Na co-dopedδ-MnO_(2) CYTOTOXICITY HeLa cells interlayer spacing cervical cancer
暂未订购
Selective activation of dioxygen to singlet oxygen over La-Si co-doped TiO_(2)microspheres for photocatalytic degradation of formaldehyde
19
作者 Shuaitao Li Haodi Liu +3 位作者 Xun Hu Yanfen Fang Xiaofeng Cao Qifeng Chen 《Journal of Environmental Sciences》 2025年第5期594-607,共14页
Volatile Organic Compounds(VOCs)are highly harmful to human beings and other organisms,and thus the elimination of VOCs is extremely urgent.Here,La-Si co-doped TiO_(2)microsphere photocatalysts,which were prepared by ... Volatile Organic Compounds(VOCs)are highly harmful to human beings and other organisms,and thus the elimination of VOCs is extremely urgent.Here,La-Si co-doped TiO_(2)microsphere photocatalysts,which were prepared by a hydrothermal method,exhibited high photocatalytic activity in the decomposition of formaldehyde compared with TiO_(2).The improved activity can be attributed to the promoted separation efficiency and density of the charge carriers,as verified by the electrochemical results in combination with density functional theory calculations.In addition,the Si dopant changed the microstructure and surface acidity,while the addition of La promoted the separation efficiency of charge carriers.More interestingly,it was found that singlet oxygen was the key species in the activation of molecular dioxygen,and it played a pivotal role in the photocatalytic decomposition of formaldehyde.This work provides a novel strategy for the selective activation of dioxygen for use in the decomposition of formaldehyde. 展开更多
关键词 Dioxygen molecular activation La-Si co-doped TiO_(2)microspheres Formaldehyde degradation Photocatalysis
原文传递
Investigation of internal action to enhance structural stability and electrochemical performance of K^(+)/Mg^(2+) co-doped cathodes in high voltage environments utilizing dual coordination
20
作者 Xuantian Feng Minjie Hou +5 位作者 Bowen Xu Yiyong Zhang Da Zhang Yun Zeng Yong Lei Feng Liang 《Materials Reports(Energy)》 2025年第1期43-52,共10页
Sodium-ion batteries(SIBs)are emerging as a promising alternative for large-scale energy storage,particularly in grid applications.Within the array of potential cathode materials,Fe/Mn-based layered oxides are notable... Sodium-ion batteries(SIBs)are emerging as a promising alternative for large-scale energy storage,particularly in grid applications.Within the array of potential cathode materials,Fe/Mn-based layered oxides are notable for their advantageous theoretical specific capacity,economic viability,and environmental sustainability.Nevertheless,the practical application of Fe/Mn-based layered oxides is constrained by their suboptimal cycle performance and rate capability during actual charging and discharging.Ion doping is an effective approach for addressing the aforementioned issues.In this context,we have successfully developed a novel K^(+) and Mg^(2+) codoped P2-Na_(0.7)Fe_(0.5)Mn_(0.5)O_(2) cathode to address these challenges.By doping with 0.05 K^(+) and 0.2 Mg^(2+),the cathode demonstrated excellent cycling stability,retaining 95% of its capacity after 50 cycles at 0.2C,whereas the undoped material retained only 59.7%.Even within a wider voltage range,the co-doped cathode retained 88% of its capacity after 100 cycles at 1C.This work integrated Mg^(2+) to activate oxygen redox reactions in Fe/Mn-based layered cathodes,thereby promoting a reversible hybrid redox process involving both anions and cations.Building on the Mg doping,larger K^(+) ions were introduced into the edge-sharing Na^(+) sites,enhancing the material's cyclic stability and expanding the interplanar distance.The significant improvement of Na^(+) diffusion coefficient by K^(+)/Mg^(2+) co-doping has been further confirmed via the galvanostatic intermittent titration technique(GITT).The study emphasizes the importance of co-doping with different coordination environments in future material design,aiming to achieve high operating voltage and energy density. 展开更多
关键词 Sodium-ion batteries P2 phase K^(+)/Mg^(2+)co-doped Lattice oxygen evolution
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部