期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Investigation of carbon fiber composite stiffened skin with vacuum assisted resin infusion/prepreg co-curing process 被引量:6
1
作者 MA XuQiang GU YiZhuo +2 位作者 LI Min LI YanXia ZHANG ZuoGuang 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第10期1956-1966,共11页
Co-cured vacuum assisted resin infusion process(co-VARI process),which combined vacuum assisted resin infusion(VARI)with prepreg vacuum bag only process(VBO),was adopted to fabricate T-shaped stiffened skin with non-c... Co-cured vacuum assisted resin infusion process(co-VARI process),which combined vacuum assisted resin infusion(VARI)with prepreg vacuum bag only process(VBO),was adopted to fabricate T-shaped stiffened skin with non-crimp fabric(NCF)stiffener and prepreg skin.During compaction stage of co-VARI process,prepreg resin impregnated fiber fabric under elevated temperature and vacuum pressure.This phenomenon was characterized by fluorescent micrographs with different holding temperature and time.Its influences on processing quality and mechanical performance for co-VARI stiffened skin with different filler materials at triangular region were further analyzed by optical micrographs and pull-off test,respectively.The results show that increasing holding temperature and prolonging holding time can promote prepreg resin impregnation in fiber fabric.Moderate prepreg resin impregnation is favorable to reduce resin rich region and increase fiber volume fraction at prepreg-fabric interface.Moreover,prepreg resin impregnation effect plays significant roles on pull-off performance for co-VARI stiffened skin with fabric filler but has negligible influences on specimens with prepreg filler.In addition,compared with stiffened skin with fabric filler,superior processing quality and pull-off performances are achieved for co-VARI stiffened skin with prepreg core filler.These results are helpful to optimize processing procedures and fabricate composite structure by coVARI process. 展开更多
关键词 polymer-matrix composites PREPREG vacuum assisted resin infusion stiffened skin structure co-curing
原文传递
Multi-objective Optimization of Co-cured Composite Laminates with Embedded Viscoelastic Damping Layer 被引量:2
2
作者 Lijian Pan Boming Zhang Fuhong Dai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期708-712,共5页
Presented herein is a methodology for the multi-objective optimization of damping and bending stiffness of cocoured composite laminates with embedded viscoelastic damping layer. The embedded viscoelastic damping layer... Presented herein is a methodology for the multi-objective optimization of damping and bending stiffness of cocoured composite laminates with embedded viscoelastic damping layer. The embedded viscoelastic damping layer is perforated with a series of small holes, and the ratio of the perforation area to the total damping area is the design variable of the methodology. The multi-objective optimization is converted into a single-objective problem by an evaluation function which is a liner weigh sum of the two sub-objective functions. The proposed methodology was carried out to determine the optimal perforation area ratios of two viscoelstic layers with different perforation distance embedded in two composite plates. Both the optimal perforation area ratios are approximate to 2.2%. However, the objective value of the plate with greater perforation distance in embedded viscoelatic layer is much greater. 展开更多
关键词 Composite laminates Viscoelastic damping layer co-cured Multi-objective optimization
在线阅读 下载PDF
Molding simulation of airfoil foam sandwich structure and interference optimization of foam-core
3
作者 Qianying CEN Zeyang XING +4 位作者 Qingyou WANG Lili LI Zhigang WANG Zhanjun WU Ling LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期325-338,共14页
During the Co-Cure Molding(CCM)of airfoil foam sandwich structure,it is challenging to avoid collapse of foam core at the trailing edge.Herein,an Equal Proportional Thickening(EPT)method is proposed to optimize the in... During the Co-Cure Molding(CCM)of airfoil foam sandwich structure,it is challenging to avoid collapse of foam core at the trailing edge.Herein,an Equal Proportional Thickening(EPT)method is proposed to optimize the interference of polymethacrylimide(PMI)foam core during the CCM process.Firstly,based on some basic parameters of composite skin and foam core obtained by experiments or multi-scale simulations,a thermal-curing-mechanical coupling analysis for the CCM of foam sandwich structure is performed and the results show that the maximum stress within foam core occurs at the completion of mold-closing,which tends to decrease during the subsequent CCM process.Then,the foam core is thickened by traditional equidistant-thickening method,and the simulation reveals that the foam core at the trailing edge tends to collapse because of stress concentration.Conversely,if the foam core is thickened by the proposed EPT method,the mold-closing caused collapse at the trailing edge can be effectively avoided,and a thickening ratio range of 0.6%–2.0%is obtained,which is further proved by practical verifications.Therefore,the interference design scheme proposed can ensure the molding quality and effectively reduce the scrap of molded products. 展开更多
关键词 Airfoil foam sandwich structure Polymethacrylimide(PMI)foam INTERFERENCE co-curing Molding simulation
原文传递
Three-dimensional Cure Simulation of Stiffened Thermosetting Composite Panels 被引量:13
4
作者 Guangquan Yue,Boming Zhang ,Fuhong Dai and Shanyi Du Center for Composite Materials,Harbin Institute of Technology,Harbin 150080,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第5期467-471,共5页
Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensi... Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensional cure simulation of T-shape stiffened thermosetting composite panels was presented.Flexible tools and locating tools were considered in the cure simulation.Temperature distribution in the composites was predicted as a function of the autoclave temperature history.A nonlinear transient heat transfer finite element model was developed to simulate the curing process of stiffened thermosetting composite panels.And a simulation example was presented to demonstrate the use of the present finite element procedure for analyzing composite curing process.The glass/polyester structure was investigated to provide insight into the nonuniform cure process and the effect of flexible tools and locating tools on temperature distribution.Temperature gradient in the intersection between the skin and the flange was shown to be strongly dependent on the structure of the flexible tools and the thickness of the skin. 展开更多
关键词 Thermosetting composite Stiffened panels co-curing Numerical simulation
原文传递
A Furan-based Phosphaphenanthrene-containing Derivative as a Highly Efficient Flame-retardant Agent for Epoxy Thermosets without Deteriorating Thermomechanical Performances 被引量:4
5
作者 Hao-Xin Niu Hong-Liang Ding +3 位作者 Jia-Li Huang Xin Wang Lei Song Yuan Hu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第3期233-240,I0005,共9页
In order to reduce greenhouse gas emissions, developing flame retardants from bio-based resources has aroused extensive interest in recent years. In this work, we utilized furfural(biomass) and 9,10-dihydro-9-oxa-10-p... In order to reduce greenhouse gas emissions, developing flame retardants from bio-based resources has aroused extensive interest in recent years. In this work, we utilized furfural(biomass) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO) to synthesize a biobased co-curing agent(FGD) to combine with 4,4'-diaminodiphenyl methane(DDM) for obtaining a low-phosphorus loading flame-retardant epoxy thermosets. The introduction of FGD decreased the activation energy of the curing progress, enhanced the mechanical properties of the epoxy thermosets, and did not affect the glass transition temperature of the epoxy thermosets. EP-5.0 had a lower thermal degradation rate and a doubled char yield compared with EP-0. The phosphorus content of EP-5.0 was only 0.45 wt%, while EP-5.0 reached the UL-94 V-0 rating with a high LOI value of 32%. Compared with EP-0, the PHRR of EP-2.5 and EP-5.0 decreased by 22.3% and 31.3%, respectively. The SEM results showed that the addition of FGD made the char residues more uniform and denser, which could effectively prevent combustible volatiles from escaping from the degradation area to the flame area and isolate the heat transfer so that the epoxy thermosets had an excellent flame-retardant performance. 展开更多
关键词 FURFURAL DOPO Bio-based co-curing agent Flame-retardant performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部