期刊文献+
共找到9,451篇文章
< 1 2 250 >
每页显示 20 50 100
融合注意力增强CNN与Transformer的电网关键节点识别
1
作者 黎海涛 乔禄 +2 位作者 杨艳红 谢冬雪 高文浩 《北京工业大学学报》 北大核心 2026年第2期117-129,共13页
为了精确识别电网关键节点以保障电力系统的可靠运行,提出一种基于融合拓扑特征与电气特征的双重自注意力卷积神经网络(convolutional neural network,CNN)的电网关键节点识别方法。首先,构建包含节点的局部拓扑特征、半局部拓扑特征、... 为了精确识别电网关键节点以保障电力系统的可靠运行,提出一种基于融合拓扑特征与电气特征的双重自注意力卷积神经网络(convolutional neural network,CNN)的电网关键节点识别方法。首先,构建包含节点的局部拓扑特征、半局部拓扑特征、电气距离及节点电压的多维特征集;然后,利用压缩-激励(squeeze-and-excitation,SE)自注意力机制改进CNN以增强对节点特征的提取能力,并引入多头自注意力的Transformer编码器以实现拓扑特征与电气特征的深度融合。结果表明:在IEEE 30节点和IEEE 118节点的标准测试系统上,该方法识别关键节点的准确性更高,并且在节点影响力评估和网络鲁棒性方面,得到的电网关键节点对网络的影响更大,鲁棒性更好,为电网的安全稳定运行提供了有效的决策支持。 展开更多
关键词 复杂网络 电网 关键节点识别 卷积神经网络(convolutional neural network cnn) 注意力 特征融合
在线阅读 下载PDF
基于CNN-BiLSTM-SSA的锅炉再热器壁温预测模型
2
作者 徐世明 何至谦 +6 位作者 彭献永 商忠宝 范景玮 王俊略 曲舒杨 刘洋 周怀春 《动力工程学报》 北大核心 2026年第1期121-130,共10页
针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成... 针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成分变量作为模型的最终输入。其次,考虑利用CNN捕捉局部相关性,BiLSTM学习数据的长期序列依赖性的优势,使用卷积神经网络-双向长短期记忆神经网络(CNN-BiLSTM)捕捉时序数据中的短期和长期依赖关系,引入稀疏自注意力SSA机制,通过为不同特征部分分配自适应权重,从而增强CNN-BiLSTM模型的特征提取与建模能力,最后利用在役1000 MW超超临界锅炉的历史数据进行仿真实验。结果表明:CNN-BiLSTM-SSA模型在高温再热器壁温预测中的均方根误差(RMSE)、平均绝对误差(MAE)及平均绝对百分比误差(MAPE)分别为4.92℃、3.81℃和0.6241%,相应的指标均优于CNN、LSTM、BiLSTM、CNN-LSTM和CNN-BiLSTM模型。 展开更多
关键词 再热器壁温软测量 深度学习 卷积神经网络 长短期记忆网络 注意力机制 核主成分分析 cnn-BiLSTM
在线阅读 下载PDF
基于改进Faster R-CNN的冬枣新鲜度判别
3
作者 戴浩天 刘文联 +2 位作者 朱美燕 张玲 朱良 《食品与机械》 北大核心 2026年第1期93-100,共8页
[目的]针对冬枣新鲜度判别需求,提出一种基于深度学习的判别方法,将冬枣分为5个新鲜度阶段,旨在提高判别准确性并减少光线反射影响。[方法]提出了一种结合高效ResNet、注意力机制与Faster R-CNN的冬枣新鲜度判别方法。利用ResNet对图像... [目的]针对冬枣新鲜度判别需求,提出一种基于深度学习的判别方法,将冬枣分为5个新鲜度阶段,旨在提高判别准确性并减少光线反射影响。[方法]提出了一种结合高效ResNet、注意力机制与Faster R-CNN的冬枣新鲜度判别方法。利用ResNet对图像进行卷积处理,提取全局特征图;通过通道注意力模块强化关键特征,结合特征金字塔网络(FPN)提取多尺度信息。Faster R-CNN从中选取候选区域,经过ROI池化后输入全连接层,通过多角度损失函数优化模型性能。通过硬度、电导率、维生素C和多酚含量等理化指标验证模型效果。[结果]改进的Faster R-CNN模型在新鲜度判别上的准确率达到98.60%。[结论]改进的Faster R-CNN模型在小规模样本下的表现优于现有方法。 展开更多
关键词 冬枣 新鲜度判别 Faster R-cnn 注意力机制 特征金字塔 小规模
在线阅读 下载PDF
基于多维故障特征提取的CNN-BiGRU-ATT多分支配电网故障定位
4
作者 张玉敏 王德龙 +4 位作者 张晓 吉兴全 张祥星 黄心月 王学林 《中国电力》 北大核心 2026年第1期163-174,共12页
针对多分支配电网故障定位在微弱故障条件下故障特征提取困难的问题,提出了基于多维故障特征提取的卷积神经网络(convolution neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制(attention m... 针对多分支配电网故障定位在微弱故障条件下故障特征提取困难的问题,提出了基于多维故障特征提取的卷积神经网络(convolution neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制(attention mechanism,ATT)多分支配电网故障定位方法。首先,分析不同故障位置和故障分支的行波特性,采用基于直线检测(line segment detector,LSD)的波头标定方法提取故障波头的坐标、幅值和斜率等信息,利用主成分分析法(principal component analysis,PCA)构造与故障位置成映射关系的多维故障特征空间;其次,构建CNN-BiGRU-ATT故障定位模型,深入挖掘时序特征和幅值特征与故障位置之间的关联;最后,结合分类与回归任务,分别实现故障区段定位与精准定位。在有限样本的情况下,区段定位准确率达99.6429%,精准定位误差55.77 m,跨工况误差最低2.95 m。结果表明,该模型能有效关联多维故障特征与故障信息,较对比模型具有更优的故障定位精度稳定性与场景泛化能力。 展开更多
关键词 故障定位 多分支配电网 LSD 多维故障特征 cnn-BiGRU-ATT
在线阅读 下载PDF
基于改进CNN的煤矿掘进工作面超前探测异常体识别方法
5
作者 原野 《煤矿现代化》 2026年第1期162-165,共4页
煤矿掘进工作面超前探测中,异常体识别的探测技术存在局限性,导致精度不足。传统的探测方法,如某些物理探测手段,受巷道空间的限制,其探测范围和精度相对有限。在处理复杂地质条件时,无法准确识别异常体的位置和形态。为此,开展基于改... 煤矿掘进工作面超前探测中,异常体识别的探测技术存在局限性,导致精度不足。传统的探测方法,如某些物理探测手段,受巷道空间的限制,其探测范围和精度相对有限。在处理复杂地质条件时,无法准确识别异常体的位置和形态。为此,开展基于改进卷积神经网络(CNN)的识别方法研究。通过预处理声波远距离超前物探数据,包括去噪、增强和归一化等步骤,提升数据质量。利用基于改进CNN的模型对探测图像进行异常体特征提取,该模型通过优化卷积层、引入注意力机制和调整超参数,有效提高了特征提取的准确性和鲁棒性。最后,基于提取的特征向量,采用SVM分类器实现异常体的识别分类。通过对比实验证明,该方法相较于现有方法在异常体识别准确率和效率有显著提升。 展开更多
关键词 改进cnn 掘进 超前探测 异常体识别
在线阅读 下载PDF
基于CNN与格栅优化的输变电工程造价趋势预测研究
6
作者 孙永彦 丁艳 +1 位作者 叶慧男 王天佑 《粘接》 2026年第2期552-555,共4页
设计要求的严格与多变常导致工程造价的增加,进而使评价指标不稳定。为此,提出采用卷积神经网络(Convolutional Neural Network,CNN)与格栅优化的输变电工程造价趋势预测方法。首先,利用数学方法估算输变电工程造价成本,并获取相应的造... 设计要求的严格与多变常导致工程造价的增加,进而使评价指标不稳定。为此,提出采用卷积神经网络(Convolutional Neural Network,CNN)与格栅优化的输变电工程造价趋势预测方法。首先,利用数学方法估算输变电工程造价成本,并获取相应的造价数据,对原始造价数据进行标准化处理,选取施工造价的预测评价指标,利用熵权法筛选特征,随后计算施工造价指标的特征相似度,构建神经网络预测模型,并引入均方误差(MSE)作为损失函数进行训练,从而建立了输变电工程造价预测模型。基于CNN特征提取与格栅优化算法计算关联度,以预测输变电工程造价趋势,最后,采用均值强化算法对造价数据进行平均化处理,所得平均值即为最终的工程造价预测值。 展开更多
关键词 输变电工程 造价预测 cnn 格栅优化 特征提取
在线阅读 下载PDF
面向可重构结构的CNN模型混合压缩方法
7
作者 刘朋飞 蒋林 +1 位作者 李远成 吴海 《现代电子技术》 北大核心 2026年第1期167-173,共7页
随着卷积神经网络规模的不断扩大,其参数量和计算量显著增加,导致硬件面临严重的访存瓶颈,限制了计算效率。为解决这一问题,文中提出一种面向可重构结构的CNN混合压缩新方法,该方法采用先剪枝后量化的策略,通过基于一阶泰勒展开的滤波... 随着卷积神经网络规模的不断扩大,其参数量和计算量显著增加,导致硬件面临严重的访存瓶颈,限制了计算效率。为解决这一问题,文中提出一种面向可重构结构的CNN混合压缩新方法,该方法采用先剪枝后量化的策略,通过基于一阶泰勒展开的滤波器剪枝、基于阈值的全连接层权值剪枝和混合精度自适应量化策略,来减少模型参数量和计算复杂度,并部署在自研的可重构处理器上。实验结果表明,所提方法在VGG16和ResNet18模型上分别实现了31.4倍和7.9倍的压缩比,精度仅下降1.20%和0.74%。在基于VirtexUltraScale VU440 FPGA开发板搭建的可重构阵列处理器上,压缩后的VGG16模型执行周期最大降低了62.7%。证明所提方法适合资源有限的边缘计算设备。 展开更多
关键词 卷积神经网络 模型压缩 结构化剪枝 自适应量化 并行计算 可重构结构
在线阅读 下载PDF
基于条件高斯PAC-Bayes的机载CNN分类器安全性评估 被引量:1
8
作者 马赞 白杰 +2 位作者 陈勇 刘瑞华 张艳婷 《航空学报》 北大核心 2025年第4期217-230,共14页
针对机器学习技术的固有不确定输出特性给航空器适航安全性定量评估造成的挑战,在SAE ARP4761标准框架下,基于条件高斯PAC-Bayes泛化理论提出一种面向卷积神经网络(CNN)分类功能的系统安全性评估方法。首先,基于PAC-Bayes理论,通过条件... 针对机器学习技术的固有不确定输出特性给航空器适航安全性定量评估造成的挑战,在SAE ARP4761标准框架下,基于条件高斯PAC-Bayes泛化理论提出一种面向卷积神经网络(CNN)分类功能的系统安全性评估方法。首先,基于PAC-Bayes理论,通过条件高斯分布改进训练方法,优化泛化界,获取CNN模型不确定性量化表示。其次,提出一种基于泛化界置信度的软件不确定性与硬件可靠性融合方法,获取CNN部件的综合失效基础数据,支持整机/系统的定量安全性评估。最后,以基于CNN的全球导航卫星系统干扰信号识别模块装机为案例,表明该方法对适航安全性评估的有效支撑作用,为CNN技术的装机应用提供了必要的适航符合性保证。同时也实验验证基于条件高斯的方法比标准PAC-Bayes及Vapnik-Chervonenkis维都具有更紧的计算边界。 展开更多
关键词 机载cnn分类器 PAC-Bayes SAE ARP4761 条件高斯 适航安全性
原文传递
基于CNN-LSTM-Attention 组合模型的黄金周旅游客流预测——以大理州为例 被引量:2
9
作者 戢晓峰 郭雅诗 +2 位作者 陈方 黄志文 李武 《干旱区资源与环境》 北大核心 2025年第3期200-208,共9页
黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-... 黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-LSTM-Attention组合模型,对大理州黄金周日度旅游客流人数进行了预测,并基于SHAP算法进行了影响因素分析。结果显示:1)CNN-LSTM-Attention组合模型的预测精度优于RF模型、SVM模型、CNN模型、LSTM模型和CNN-LSTM模型。2)引入百度搜索指数特征后,模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))表现最优,表明百度搜索指数的加入在一定程度上提升了模型的预测精度。文中所构模型为黄金周旅游客流预测提供了新思路。 展开更多
关键词 客流预测 黄金周 卷积神经网络(cnn) 长短期记忆网络(LSTM) 注意力机制
原文传递
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
10
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(cnn) 时频变换 TRANSFORMER
在线阅读 下载PDF
基于DWT-CNN-Informer模型的液压支架压力多步长预测 被引量:3
11
作者 张传伟 张刚强 +1 位作者 路正雄 李林岳 《中国安全生产科学技术》 北大核心 2025年第4期57-63,共7页
为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神... 为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神经网络(CNN)模型提取频率特征;提取的频率特征输入Informer编码器,经位置编码和多头概率稀疏自注意力机制捕捉时序变化特征,并结合自注意力蒸馏减少特征冗余;将Informer解码器改为全连接层,直接输出各分量多步长预测结果;重构叠加各分量多步长预测结果得到液压支架压力多步长预测结果。研究结果表明:在预测步长分别为6,12,24时,DWT-CNN-Informer模型相比LSTM、Informer、CNN-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、对称平均绝对百分比误差(SMAPE)指标上均表现出更高预测精度。研究结果为液压支架压力精准预测提供有效方法。 展开更多
关键词 液压支架压力 多步长预测 离散小波变换 cnn模型 Informer模型
在线阅读 下载PDF
改进Faster-R-CNN的输送带表面损伤检测 被引量:2
12
作者 袁媛 赵鹏举 +1 位作者 孟文俊 王航 《机械设计与制造》 北大核心 2025年第3期199-203,共5页
针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入ancho... 针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入anchor原始特征与卷积相融合的背景分类,以加强输送带的损伤特征信息;最后构建输送带表面损伤的数据集进行数据试验,并分别采用VGG-19,ResNet-18骨干网络进行试验对比,结果表明改进的Faster-R-CNN的算法,针对输送带划伤、撕裂和破损的损伤状态均能够有效识别。 展开更多
关键词 输送带 损伤检测 Faster-R-cnn MobileNet
在线阅读 下载PDF
基于Mask R⁃CNN的多类建筑物损伤识别方法 被引量:2
13
作者 杨敬松 王煜鑫 +2 位作者 李智涛 卢泽葳 彭福民 《防灾减灾工程学报》 北大核心 2025年第3期562-570,共9页
地震发生后快速对建筑物损伤进行识别,可以提高灾害损失评估的效率,并为救援提供有效地决策支持。针对因背景干扰带来的重要特征表达能力弱的问题,提出一种基于深度学习框架Mask R‑CNN的多建筑物损伤识别方法。首先,对样本图像进行预处... 地震发生后快速对建筑物损伤进行识别,可以提高灾害损失评估的效率,并为救援提供有效地决策支持。针对因背景干扰带来的重要特征表达能力弱的问题,提出一种基于深度学习框架Mask R‑CNN的多建筑物损伤识别方法。首先,对样本图像进行预处理,克服复杂环境背景因素干扰,并进行多途径扩增,得到用于深度学习的扩增样本数据集。其次,优化特征提取网络,采用嵌入注意力机制模块SE的MobileNetv3网络作为主干网络,增加模型对建筑物损伤空间及语义信息的提取,有效避免背景对模型性能的影响,改进损失函数,避免遗漏类别和类别错分现象,同时引入迁移学习,降低训练成本;最后,采用定性分析和定量评估相结合的手段,多维度评估模型泛化能力和鲁棒性。改进后的Mask R‑CNN模型的平均精度达到了84.34%,相对于原始的Mask R‑CNN模型,精度提高了9.12%。结果表明,改进后的模型在识别含有多种损伤特征和噪声背景的建筑物损伤图像方面表现良好,可以为地震后建筑物的损伤评估提供有效地技术支持。 展开更多
关键词 人工智能 建筑物损伤识别 Mask R‑cnn 实例分割
原文传递
基于Faster R-CNN的作物生物密度智能识别方法 被引量:1
14
作者 李修华 李倩 +2 位作者 张瀚文 丁璐 王泽平 《生物工程学报》 北大核心 2025年第10期3828-3839,共12页
准确获取大田作物数量和密度不仅是水肥管理按需投入的关键,也是保障作物产量和品质的关键。无人机(unmanned aerial vehicle,UAV)航拍可以快速且大面积地获取大田作物的分布图像信息,但是单一类型密集目标的准确识别对于大多数识别算... 准确获取大田作物数量和密度不仅是水肥管理按需投入的关键,也是保障作物产量和品质的关键。无人机(unmanned aerial vehicle,UAV)航拍可以快速且大面积地获取大田作物的分布图像信息,但是单一类型密集目标的准确识别对于大多数识别算法来说都是一个巨大的挑战。本研究以香蕉苗为例,通过无人机高空航拍香蕉园的图像,研究密集目标高效识别方法。本研究提出了一种“裁-识-拼”的策略,构建了一个基于改进的Faster R-CNN算法的计数方法。该方法先将包含高密集目标的图像按不同尺寸(模拟不同飞行高度)裁剪成大量图像瓦片,并采用对比度限制自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法提高图像质量,构建了包含36000张图像瓦片的香蕉苗数据集;然后采用经过参数优化的Faster R-CNN网络训练香蕉苗识别模型;最后将识别结果进行反拼接,并设计了一种边界去重算法,对最终的计数结果进行校正,以减少图像裁剪引起的香蕉苗重复识别。结果表明,经过参数优化的Faster R-CNN对不同尺寸的香蕉图像数据集的识别精度最高达到了0.99;去重算法可以将针对航拍原始图像的平均计数误差从1.60%降低到0.60%,香蕉苗的平均计数准确率达到99.4%。本研究提出的方法有效解决了高分辨率航拍图像中密集小目标识别难题,为精准农业中的作物密度智能监测提供了高效可靠的技术支撑。 展开更多
关键词 果园计数 香蕉 Faster R-cnn 深度学习 去重
原文传递
基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究 被引量:3
15
作者 于宪煜 杨森 《大地测量与地球动力学》 北大核心 2025年第1期1-4,12,共5页
基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2... 基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2、7∶3、6∶4的样本比例进行计算。研究结果表明,Mask R-CNN模型识别结果准确率、召回率和F 1分数等3项指标均优于Faster R-CNN;且经过交叉验证,证明Mask R-CNN模型的性能更为稳定。 展开更多
关键词 深度学习 滑坡识别 Mask R-cnn Faster R-cnn 交叉验证
在线阅读 下载PDF
一种改进的Faster R-CNN遥感图像多目标检测模型研究 被引量:1
16
作者 苗茹 李祎 +3 位作者 周珂 张俨娜 常然然 孟更 《计算机工程》 北大核心 2025年第8期292-304,共13页
针对遥感图像背景复杂、目标种类多和尺度差异大所造成的目标漏检和误检问题,提出一种改进Faster R-CNN多目标检测模型。首先,采用Swin Transformer来替代ResNet 50骨干网络,增强模型特征提取能力;其次,添加平衡特征金字塔(BFP)模块融... 针对遥感图像背景复杂、目标种类多和尺度差异大所造成的目标漏检和误检问题,提出一种改进Faster R-CNN多目标检测模型。首先,采用Swin Transformer来替代ResNet 50骨干网络,增强模型特征提取能力;其次,添加平衡特征金字塔(BFP)模块融合浅层和高层语义信息,进一步加强特征融合效果;最后,在分类和回归分支中,添加动态权重机制,促进网络在训练过程中更关注高质量候选框,提高目标定位和分类的精确度。在RSOD数据集上的实验结果表明,所提模型相较于Faster R-CNN模型每秒浮点运算次数(FLOPs)大幅度减少,并且模型的mAP@0.5∶0.95提高了10.7百分点,平均召回率提高10.6百分点。相较于其他主流检测模型,所提模型在降低漏检率的同时,取得了更高的精度,能显著提高复杂背景下遥感图像的检测精度。 展开更多
关键词 遥感图像 多目标检测 Faster R-cnn Swin Transformer模块 平衡特征金字塔 动态权重机制
在线阅读 下载PDF
改进Faster R-CNN的钢材表面缺陷检测 被引量:4
17
作者 冷岳峰 刘正 +1 位作者 徐宝祎 李志轩 《机械科学与技术》 北大核心 2025年第1期75-83,共9页
钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特... 钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特征融合模块与轻量化通道注意力模块,增加模型对精细特征的捕捉能力。改进模型在NEU-DET数据集上的实验结果显示,最终mAP(Mean average precision,记为m_(AP))值为80.2%,比原始模型提高了12.6%,FPS提高了40.9%。该算法能够有效提升钢材表面缺陷的检测精度,为钢材表面缺陷自动检测提供参考。 展开更多
关键词 缺陷检测 特征融合 通道注意力机制 改进Faster R-cnn算法
在线阅读 下载PDF
基于改进Faster R-CNN的焊缝缺陷检测方法 被引量:3
18
作者 陈利琼 梅后金 +1 位作者 胡洪宣 赵奎 《科学技术与工程》 北大核心 2025年第5期2027-2033,共7页
管道内部的焊缝缺陷是导致管道发生泄漏和破裂事故的主要原因,而X射线能够有效地检测到这些缺陷。然而,焊缝缺陷存在种类多、尺寸小和背景复杂等问题,影响检测精度。针对目前基于深度学习的焊缝缺陷检测模型对图像复杂背景和光照变化的... 管道内部的焊缝缺陷是导致管道发生泄漏和破裂事故的主要原因,而X射线能够有效地检测到这些缺陷。然而,焊缝缺陷存在种类多、尺寸小和背景复杂等问题,影响检测精度。针对目前基于深度学习的焊缝缺陷检测模型对图像复杂背景和光照变化的适应性不足、小目标检测效果不佳的问题。在快速区域卷积神经网络(faster region convolutional neural networks,Faster R-CNN)网络的主干网络上添加通道注意力机制和对残差块结构进行修改,并采用ROI Align替换传统Faster R-CNN网络的ROI Pooling的改进模型。实验结果表明:改进后的Faster R-CNN网络模型与原算法相比,平均精度值(mean average precision,mAP)和F_(1)分别比原算法提升了15.82%和16.44%,能够满足焊缝缺陷检测的高精度要求,具有重要的理论意义与良好的工程应用前景。 展开更多
关键词 深度学习 缺陷检测 X射线图像 Faster R-cnn
在线阅读 下载PDF
基于多变量CNN-LSTM神经网络的白家包滑坡位移预测 被引量:1
19
作者 秦世伟 何浩 +3 位作者 谢攀 罗柏程 张彤 戴自立 《应用基础与工程科学学报》 北大核心 2025年第5期1239-1247,共9页
滑坡是一种常见的地质灾害,严重威胁着人民生命财产安全.为减少滑坡带来的损失,对滑坡体位移的精准预测显得尤为关键.结合CNN神经网络和LSTM神经网络,采用PCA数据降维和贝叶斯优化超参数,建立了基于CNN-LSTM组合的多变量神经网络模型用... 滑坡是一种常见的地质灾害,严重威胁着人民生命财产安全.为减少滑坡带来的损失,对滑坡体位移的精准预测显得尤为关键.结合CNN神经网络和LSTM神经网络,采用PCA数据降维和贝叶斯优化超参数,建立了基于CNN-LSTM组合的多变量神经网络模型用于预测滑坡位移.以白家包滑坡为例,基于2017~2019年的12组监测数据,构建了单变量CNN-LSTM、多变量LSTM、多变量CNN以及多变量CNN-LSTM的滑坡位移预测模型.对比各模型预测精度,结果显示:在衡量模型性能的关键指标MAE、RMSE、MAPE和R^(2)以及测试集模型预测值和真实值的拟合度方面,多变量CNN-LSTM模型的滑坡位移预测结果均展现出显著优势.因此,该模型可为滑坡体位移的准确预测,以及滑坡灾害的预警预报和防灾减灾工作提供科学依据. 展开更多
关键词 cnn-LSTM神经网络 PCA数据降维 贝叶斯优化超参数 白家包滑坡 位移预测 多变量模型
原文传递
基于CNN-BiLSTM的ICMPv6 DDoS攻击检测方法
20
作者 王春兰 郭峰 +2 位作者 刘晋州 王明华 韩宝安 《火力与指挥控制》 北大核心 2025年第4期71-78,84,共9页
针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明... 针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明:提出的算法在多次实验中的检测准确率、误报率与漏报率平均值分别为92.84%、4.49%和10.54%,检测算法泛化性较强,性能优于其他算法,能够有效处理ICMPv6 DDoS攻击检测问题。 展开更多
关键词 分布式拒绝服务攻击 攻击检测 ICMPV6 cnn BiLSTM
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部