The development of earth-abundant-metal-based electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction(HER)is crucial for the clean and renewable energy application.Herein,we repor...The development of earth-abundant-metal-based electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction(HER)is crucial for the clean and renewable energy application.Herein,we report a molten-salt method to synthesize Co-doped CaMn_(3)O_(6)(CMO)nanowires(NWs)as effective electrocatalyst for HER.The as-obtained CaMn_(3-x)Co_(x)O_(6)(CMCO)exhibits a small onset overpotential of 70 mV,a required overpotential of 140 mV at a current density of 10 mA·cm^(-2),a Tafel slope of 39 mV·dec^(-1)in 0.1 M HClO_(4),and a satisfying long-term stability.Experimental characterizations combined with density functional theory(DFT)calculations demonstrate that the obtained HER performance can be attributed to the Co-doping which altered CMO’s surface electronic structures and properties.Considering the simplicity of synthesis route and the abundance of the pertinent elements,the synthesized CMCO shows a promising prospect as a candidate for the development of earth-abundant,metal-based,and cost-effective electrocatalyst with superior HER activity.Our results also establish a strategy of rational design and construction of novel electrocatalyst toward HER by tailoring band structures of transition metal oxides(TMOs).展开更多
基金This work was financially supported by the National Key Research and Development Program of China(No.2020YFB2008502)the National Natural Science Foundation of China(Nos.51972124,51872101,51902115,and 12172143)the Innovation Fund of Wuhan National Laboratory for Optoelectronics(WNLO)。
文摘The development of earth-abundant-metal-based electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction(HER)is crucial for the clean and renewable energy application.Herein,we report a molten-salt method to synthesize Co-doped CaMn_(3)O_(6)(CMO)nanowires(NWs)as effective electrocatalyst for HER.The as-obtained CaMn_(3-x)Co_(x)O_(6)(CMCO)exhibits a small onset overpotential of 70 mV,a required overpotential of 140 mV at a current density of 10 mA·cm^(-2),a Tafel slope of 39 mV·dec^(-1)in 0.1 M HClO_(4),and a satisfying long-term stability.Experimental characterizations combined with density functional theory(DFT)calculations demonstrate that the obtained HER performance can be attributed to the Co-doping which altered CMO’s surface electronic structures and properties.Considering the simplicity of synthesis route and the abundance of the pertinent elements,the synthesized CMCO shows a promising prospect as a candidate for the development of earth-abundant,metal-based,and cost-effective electrocatalyst with superior HER activity.Our results also establish a strategy of rational design and construction of novel electrocatalyst toward HER by tailoring band structures of transition metal oxides(TMOs).