期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A short-term photovoltaic power prediction method based on improved spectral clustering-DTW and Stacking fusion
1
作者 MEI Bingxiao MA Lyubin +2 位作者 YIN Jie XIE Zhiduo WANG Feng 《High Technology Letters》 2025年第3期288-299,共12页
Accurate short-term photovoltaic(PV)output forecasting is beneficial for increasing grid stabil-ity and enhancing the capacity for photovoltaic power absorption.In response to the challenges faced by commonly used pho... Accurate short-term photovoltaic(PV)output forecasting is beneficial for increasing grid stabil-ity and enhancing the capacity for photovoltaic power absorption.In response to the challenges faced by commonly used photovoltaic forecasting methods,which struggle to handle issues such as non-u-niform lengths of time series data for power generation and meteorological conditions,overlapping photovoltaic characteristics,and nonlinear correlations,an improved method that utilizes spectral clustering and dynamic time warping(DTW)for selecting similar days is proposed to optimize the dataset along the temporal dimension.Furthermore,XGBoost is employed for recursive feature selec-tion.On this basis,to address the issue that single forecasting models excel at capturing different data characteristics and tend to exhibit significant prediction errors under adverse meteorological con-ditions,an improved forecasting model based on Stacking and weighted fusion is proposed to reduce the independent bias and variance of individual models and enhance the predictive accuracy.Final-ly,experimental validation is carried out using real data from a photovoltaic power station in the Xi-aoshan District of Hangzhou,China,demonstrating that the proposed method can still achieve accu-rate and robust forecasting results even under conditions of significant meteorological fluctuations. 展开更多
关键词 photovoltaic output prediction feature dimension optimization recursive feature selection spectral clustering-dynamic time warping STACKING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部