Accurate short-term photovoltaic(PV)output forecasting is beneficial for increasing grid stabil-ity and enhancing the capacity for photovoltaic power absorption.In response to the challenges faced by commonly used pho...Accurate short-term photovoltaic(PV)output forecasting is beneficial for increasing grid stabil-ity and enhancing the capacity for photovoltaic power absorption.In response to the challenges faced by commonly used photovoltaic forecasting methods,which struggle to handle issues such as non-u-niform lengths of time series data for power generation and meteorological conditions,overlapping photovoltaic characteristics,and nonlinear correlations,an improved method that utilizes spectral clustering and dynamic time warping(DTW)for selecting similar days is proposed to optimize the dataset along the temporal dimension.Furthermore,XGBoost is employed for recursive feature selec-tion.On this basis,to address the issue that single forecasting models excel at capturing different data characteristics and tend to exhibit significant prediction errors under adverse meteorological con-ditions,an improved forecasting model based on Stacking and weighted fusion is proposed to reduce the independent bias and variance of individual models and enhance the predictive accuracy.Final-ly,experimental validation is carried out using real data from a photovoltaic power station in the Xi-aoshan District of Hangzhou,China,demonstrating that the proposed method can still achieve accu-rate and robust forecasting results even under conditions of significant meteorological fluctuations.展开更多
基金Supported by the National Natural Science Foundation of China(No.52005442)the Technology Project of Zhejiang Huayun Information Technology Co.,Ltd.(No.HYJT/JS-2020-004).
文摘Accurate short-term photovoltaic(PV)output forecasting is beneficial for increasing grid stabil-ity and enhancing the capacity for photovoltaic power absorption.In response to the challenges faced by commonly used photovoltaic forecasting methods,which struggle to handle issues such as non-u-niform lengths of time series data for power generation and meteorological conditions,overlapping photovoltaic characteristics,and nonlinear correlations,an improved method that utilizes spectral clustering and dynamic time warping(DTW)for selecting similar days is proposed to optimize the dataset along the temporal dimension.Furthermore,XGBoost is employed for recursive feature selec-tion.On this basis,to address the issue that single forecasting models excel at capturing different data characteristics and tend to exhibit significant prediction errors under adverse meteorological con-ditions,an improved forecasting model based on Stacking and weighted fusion is proposed to reduce the independent bias and variance of individual models and enhance the predictive accuracy.Final-ly,experimental validation is carried out using real data from a photovoltaic power station in the Xi-aoshan District of Hangzhou,China,demonstrating that the proposed method can still achieve accu-rate and robust forecasting results even under conditions of significant meteorological fluctuations.