The main result of this paper is that any two non-isomorphic indecomposable modules of a cluster-tilted algebra of finite representation type have different dimension vectors. As an application to cluster algebras of ...The main result of this paper is that any two non-isomorphic indecomposable modules of a cluster-tilted algebra of finite representation type have different dimension vectors. As an application to cluster algebras of Types A, D, E, we give a proof of the Fomin Zelevinsky denominators conjecture for cluster variables, namely, different cluster variables have different denominators with respect to any given cluster.展开更多
In this paper,we compute the Frobenius dimension of any cluster-tilted algebra of finite type.Moreover,we give conditions on the bound quiver of a cluster-tilted algebra A such that八has non-trivial open Frobenius str...In this paper,we compute the Frobenius dimension of any cluster-tilted algebra of finite type.Moreover,we give conditions on the bound quiver of a cluster-tilted algebra A such that八has non-trivial open Frobenius structures.展开更多
We consider the existence of cluster-tilting objects in a d-cluster category such that its endomorphism algebra is self-injective,and also the properties for cluster-tilting objects in d-cluster categories.We get the ...We consider the existence of cluster-tilting objects in a d-cluster category such that its endomorphism algebra is self-injective,and also the properties for cluster-tilting objects in d-cluster categories.We get the following results:(1)When d>1,any almost complete cluster-tilting object in d-cluster category has only one complement.(2)Cluster-tilting objects in d-cluster categories are induced by tilting modules over some hereditary algebras.We also give a condition for a tilting module to induce a cluster-tilting object in a d-cluster category.(3)A 3-cluster category of finite type admits a cluster-tilting object if and only if its type is A1,A3,D2n-1(n>2).(4)The(2m+1)-cluster category of type D2n-1 admits a cluster-tilting object such that its endomorphism algebra is self-injective,and its stable category is equivalent to the(4m+2)-cluster category of type A4mn-4m+2n-1.展开更多
We give the condition of isomorphisms between tilting graphs and cluster-tilting graphs of hereditary algebras. As a conclusion, it is proved that a graph is a skeleton graph of Stasheff polytope if and only if it is ...We give the condition of isomorphisms between tilting graphs and cluster-tilting graphs of hereditary algebras. As a conclusion, it is proved that a graph is a skeleton graph of Stasheff polytope if and only if it is both the tilting graph of a hereditary algebra and also the cluster-tilting graph of another hereditary algebra. At last, when comparing such uniformity, the geometric realizations of simplicial complexes associated with tilting modules and clustertilting objects are discussed respectively.展开更多
Motivated by T-tilting theory developed by T. Adachi, O. Iyama, I. Reiten, for a finite-dimensional algebra A with action by a finite group G, we introduce the notion of G-stable support τ-tilting modules. Then we es...Motivated by T-tilting theory developed by T. Adachi, O. Iyama, I. Reiten, for a finite-dimensional algebra A with action by a finite group G, we introduce the notion of G-stable support τ-tilting modules. Then we establish bijections among G-stable support τ-tilting modules over ∧, G-stable two-term silting complexes in the homotopy category of bounded complexes of finitely generated projective ∧-modules, and G-stable functorially finite torsion classes in the category of finitely generated left ∧-modules. In the case when ∧ is the endomorphism of a G-stable cluster-tilting object T over a Horn-finite 2-Calabi- Yau triangulated category L with a G-action, these are also in bijection with G-stable cluster-tilting objects in L. Moreover, we investigate the relationship between stable support τ-tilitng modules over ∧ and the skew group algebra ∧G.展开更多
Let C be a triangulated category which has Auslander-Reiten triangles, and Ra functorially finite rigid subcategory of C. It is well known that there exist Auslander-Reiten sequences in rood R. In this paper, we give ...Let C be a triangulated category which has Auslander-Reiten triangles, and Ra functorially finite rigid subcategory of C. It is well known that there exist Auslander-Reiten sequences in rood R. In this paper, we give explicitly the relations between the Auslander-Reiten translations, sequences in mod R and the Auslander-Reiten functors, triangles in C, respectively. Furthermore, if T is a cluster-tilting subcategory of C and mod T- is a Frobenius category, we also get the Auslander-Reiten functor and the translation functor of mod T- corresponding to the ones in C. As a consequence, we get that if the quotient of a d-Calabi-Yau triangulated category modulo a cluster tilting subcategory is Probenius, then its stable category is (2d-1)-Calabi-Yau. This result was first proved by Keller and Reiten in the case d= 2, and then by Dugas in the general case, using different methods. 2010 Mathematics Subject Classification: 16G20, 16G70展开更多
基金Supported partially by the National 973 Programs (Grant No. 2006CB805905)
文摘The main result of this paper is that any two non-isomorphic indecomposable modules of a cluster-tilted algebra of finite representation type have different dimension vectors. As an application to cluster algebras of Types A, D, E, we give a proof of the Fomin Zelevinsky denominators conjecture for cluster variables, namely, different cluster variables have different denominators with respect to any given cluster.
文摘In this paper,we compute the Frobenius dimension of any cluster-tilted algebra of finite type.Moreover,we give conditions on the bound quiver of a cluster-tilted algebra A such that八has non-trivial open Frobenius structures.
文摘We consider the existence of cluster-tilting objects in a d-cluster category such that its endomorphism algebra is self-injective,and also the properties for cluster-tilting objects in d-cluster categories.We get the following results:(1)When d>1,any almost complete cluster-tilting object in d-cluster category has only one complement.(2)Cluster-tilting objects in d-cluster categories are induced by tilting modules over some hereditary algebras.We also give a condition for a tilting module to induce a cluster-tilting object in a d-cluster category.(3)A 3-cluster category of finite type admits a cluster-tilting object if and only if its type is A1,A3,D2n-1(n>2).(4)The(2m+1)-cluster category of type D2n-1 admits a cluster-tilting object such that its endomorphism algebra is self-injective,and its stable category is equivalent to the(4m+2)-cluster category of type A4mn-4m+2n-1.
基金Acknowledgements The first author was grateful to Claus Michael Ringel for fruitful discussion. The authors warmly thank the referees for many helpful comments and suggestions in improving the quality and readability of this paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11271318, 11171296, J1210038), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110101110010), and the Natural Science Foundation of Zhejiang Province (No. LZ13A010001).
文摘We give the condition of isomorphisms between tilting graphs and cluster-tilting graphs of hereditary algebras. As a conclusion, it is proved that a graph is a skeleton graph of Stasheff polytope if and only if it is both the tilting graph of a hereditary algebra and also the cluster-tilting graph of another hereditary algebra. At last, when comparing such uniformity, the geometric realizations of simplicial complexes associated with tilting modules and clustertilting objects are discussed respectively.
基金The authors would like to thank Dong Yang and Yuefei Zheng for their helpful discussion. This work was partially supported by the National Natural Science Foundation of China (Grant No. 11571164) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Motivated by T-tilting theory developed by T. Adachi, O. Iyama, I. Reiten, for a finite-dimensional algebra A with action by a finite group G, we introduce the notion of G-stable support τ-tilting modules. Then we establish bijections among G-stable support τ-tilting modules over ∧, G-stable two-term silting complexes in the homotopy category of bounded complexes of finitely generated projective ∧-modules, and G-stable functorially finite torsion classes in the category of finitely generated left ∧-modules. In the case when ∧ is the endomorphism of a G-stable cluster-tilting object T over a Horn-finite 2-Calabi- Yau triangulated category L with a G-action, these are also in bijection with G-stable cluster-tilting objects in L. Moreover, we investigate the relationship between stable support τ-tilitng modules over ∧ and the skew group algebra ∧G.
文摘Let C be a triangulated category which has Auslander-Reiten triangles, and Ra functorially finite rigid subcategory of C. It is well known that there exist Auslander-Reiten sequences in rood R. In this paper, we give explicitly the relations between the Auslander-Reiten translations, sequences in mod R and the Auslander-Reiten functors, triangles in C, respectively. Furthermore, if T is a cluster-tilting subcategory of C and mod T- is a Frobenius category, we also get the Auslander-Reiten functor and the translation functor of mod T- corresponding to the ones in C. As a consequence, we get that if the quotient of a d-Calabi-Yau triangulated category modulo a cluster tilting subcategory is Probenius, then its stable category is (2d-1)-Calabi-Yau. This result was first proved by Keller and Reiten in the case d= 2, and then by Dugas in the general case, using different methods. 2010 Mathematics Subject Classification: 16G20, 16G70