The development of stimuli-responsive circularly polarized luminescence(CPL)materials is quite attractive but challenging.Here,a pair of atomically precise enan-tiomers R/S-Ag20 nanoclusters has been synthesized using...The development of stimuli-responsive circularly polarized luminescence(CPL)materials is quite attractive but challenging.Here,a pair of atomically precise enan-tiomers R/S-Ag20 nanoclusters has been synthesized using chiral acid ligands.And then,stimuli-responsive CPL materials were developed by assembling the chiral silver nanoclusters with an achiral bridging ligand.The atomically precise silver cluster-assembled materials produce CPL with a dissymmetry factor(|glum|)of 1×10-3,through the high-efficiency chiral induction process.More interestingly,the single CPL band at room temperature could quickly transform into highly separated dual CPL emissions at low temperature.This study provides a new strategy for the rational functionalization of chiral silver clusters in preparing cluster-based CPL emitters and enriches the types of stimuli-responsive CPL materials.展开更多
For cluster catalysts,reducing their size to single atoms gives rise to precise and high-selective catalytic performance,at the cost of losing some tunability.Superatoms,the entirety with atom-like electronic shells a...For cluster catalysts,reducing their size to single atoms gives rise to precise and high-selective catalytic performance,at the cost of losing some tunability.Superatoms,the entirety with atom-like electronic shells and fine-tunable properties as clusters,are promising candidates for cluster catalysts.Here,we predicted a superatom-assembled two-dimension Al_(8)O_(3)superatom-oxide framework(SOF) using first principles calculation,where the Al8core comprises two 8-electron Al4superatoms and further linked by oxygen atoms in a graphene-like lattice,resulting in porous and stable geometry.The Al_(8)O_(3)-SOF serves as an efficient superatomic catalyst for nitric oxide(NO) reduction reaction,where the Al4superatomic unit acts cohesively as the active site throughout the catalytic process and its superatomic P orbital plays an important role in activating NO molecule.Additionally,the catalytic activity of Al_(8)O_(3)-SOF increases when the two central Al atoms of the Al8core are replaced by Ga atoms,reducing the limiting potential to -0.48 V comparable to that of the reported Pt(100).Our work proposes a novel series of superatomic catalysts and reveals the superatomic behavior in the catalytic process,providing references for the development of efficient heterogeneous catalysts.展开更多
Cluster-assembled materials(CAMs)present delicate structures and tailored properties,which have gained extensive interest in recent years.Due to the noncovalent linkage and size of sub-1 nm,clusters present polymer-li...Cluster-assembled materials(CAMs)present delicate structures and tailored properties,which have gained extensive interest in recent years.Due to the noncovalent linkage and size of sub-1 nm,clusters present polymer-like solution behaviors distinct from conventional nanocrystals,whereby a variety of CAMs with different constructions have been fabricated.To our knowledge,the morphologies and properties of CAMs are closely connected,which are strongly dependent on the structure and coordination state of cluster building blocks.For the CAMs with superior performances,the specific arrangement and surroundings of clusters at subnanometer scale usually result in wellorganized structures.In this review,we will summarize the recent progress of CAMs with highly ordered structures and advanced properties,where polyoxometalate cluster assemblies as well as cluster-nuclei co-assemblies are involved.The application potentials of CAMs are then discussed,especially on the cluster arrangements and interactions at subnanometer scale.However,current researches are far from reaching the point,and future efforts are needed before the nature of cluster-based nanostructures can be sufficiently revealed.We hope this article can offer unique insights and instructive understanding to the CAMs.展开更多
Cluster-assembled materials have long been pursued as they can create some unprecedented and desirable properties.Herein,we assemble a class of one-dimensional(1D)ReNX_(4)(X=F,Cl,Br and I)and MFs(M=V,Nb and Ta)nanowir...Cluster-assembled materials have long been pursued as they can create some unprecedented and desirable properties.Herein,we assemble a class of one-dimensional(1D)ReNX_(4)(X=F,Cl,Br and I)and MFs(M=V,Nb and Ta)nanowires by covalently linking their superatomic clusters.These assembled ID nanowires exhibit outstanding energetic and dynamic stabilities,and hold sizable spontaneous polarization,low ferroelectric switching barriers and high critical temperature.Their superior ferroelec-tricity is originated from do-configuration transition metal ions generated by the hybridization of empty d orbitals of metal atoms and p orbitals of non-metal atoms.These critical insights pave a new avenue to fabricate 1D ferroelectrics toward the development of miniaturized and high-density electronic devices using building blocks as cluster with precise structures and functionalities.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:92061201 U21A20277Thousand Talents(Zhongyuan Scholars)Program of Henan Province,Grant/Award Number:234000510007Excellent Youth Foundation of Henan Scientific Committee,Grant/Award Number:232300421022。
文摘The development of stimuli-responsive circularly polarized luminescence(CPL)materials is quite attractive but challenging.Here,a pair of atomically precise enan-tiomers R/S-Ag20 nanoclusters has been synthesized using chiral acid ligands.And then,stimuli-responsive CPL materials were developed by assembling the chiral silver nanoclusters with an achiral bridging ligand.The atomically precise silver cluster-assembled materials produce CPL with a dissymmetry factor(|glum|)of 1×10-3,through the high-efficiency chiral induction process.More interestingly,the single CPL band at room temperature could quickly transform into highly separated dual CPL emissions at low temperature.This study provides a new strategy for the rational functionalization of chiral silver clusters in preparing cluster-based CPL emitters and enriches the types of stimuli-responsive CPL materials.
基金supported by the National Natural Science Foundation of China (22103001, U21A20317)the Natural Science Foundation of Anhui Province (2108085QB64)the Fundamental Research Funds for the Central Universities (20720220009)。
文摘For cluster catalysts,reducing their size to single atoms gives rise to precise and high-selective catalytic performance,at the cost of losing some tunability.Superatoms,the entirety with atom-like electronic shells and fine-tunable properties as clusters,are promising candidates for cluster catalysts.Here,we predicted a superatom-assembled two-dimension Al_(8)O_(3)superatom-oxide framework(SOF) using first principles calculation,where the Al8core comprises two 8-electron Al4superatoms and further linked by oxygen atoms in a graphene-like lattice,resulting in porous and stable geometry.The Al_(8)O_(3)-SOF serves as an efficient superatomic catalyst for nitric oxide(NO) reduction reaction,where the Al4superatomic unit acts cohesively as the active site throughout the catalytic process and its superatomic P orbital plays an important role in activating NO molecule.Additionally,the catalytic activity of Al_(8)O_(3)-SOF increases when the two central Al atoms of the Al8core are replaced by Ga atoms,reducing the limiting potential to -0.48 V comparable to that of the reported Pt(100).Our work proposes a novel series of superatomic catalysts and reveals the superatomic behavior in the catalytic process,providing references for the development of efficient heterogeneous catalysts.
基金National Natural Science Foundation of China,Grant/Award Number:22035004National Key R&D Program of China,Grant/Award Numbers:2016YFA0202801,2017YFA0700101。
文摘Cluster-assembled materials(CAMs)present delicate structures and tailored properties,which have gained extensive interest in recent years.Due to the noncovalent linkage and size of sub-1 nm,clusters present polymer-like solution behaviors distinct from conventional nanocrystals,whereby a variety of CAMs with different constructions have been fabricated.To our knowledge,the morphologies and properties of CAMs are closely connected,which are strongly dependent on the structure and coordination state of cluster building blocks.For the CAMs with superior performances,the specific arrangement and surroundings of clusters at subnanometer scale usually result in wellorganized structures.In this review,we will summarize the recent progress of CAMs with highly ordered structures and advanced properties,where polyoxometalate cluster assemblies as well as cluster-nuclei co-assemblies are involved.The application potentials of CAMs are then discussed,especially on the cluster arrangements and interactions at subnanometer scale.However,current researches are far from reaching the point,and future efforts are needed before the nature of cluster-based nanostructures can be sufficiently revealed.We hope this article can offer unique insights and instructive understanding to the CAMs.
基金supported by the National Natural Science Foundation of China(Nos.12004065,91961204,12222403,and 11974068)the Doctoral Start-up Foundation of Liaoning Province(No.2022-BS-081)the Fundamental Research Funds for the Central Univeristies(No.DUT24LAB114).
文摘Cluster-assembled materials have long been pursued as they can create some unprecedented and desirable properties.Herein,we assemble a class of one-dimensional(1D)ReNX_(4)(X=F,Cl,Br and I)and MFs(M=V,Nb and Ta)nanowires by covalently linking their superatomic clusters.These assembled ID nanowires exhibit outstanding energetic and dynamic stabilities,and hold sizable spontaneous polarization,low ferroelectric switching barriers and high critical temperature.Their superior ferroelec-tricity is originated from do-configuration transition metal ions generated by the hybridization of empty d orbitals of metal atoms and p orbitals of non-metal atoms.These critical insights pave a new avenue to fabricate 1D ferroelectrics toward the development of miniaturized and high-density electronic devices using building blocks as cluster with precise structures and functionalities.