期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Cluster algebra structure on the finite dimensional representations of affine quantum group U_q(_3)
1
作者 杨彦敏 马海涛 +1 位作者 林冰生 郑驻军 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期119-124,共6页
In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine qua... In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it. 展开更多
关键词 affine quantum group cluster algebra monoidal categorification
原文传递
Quantum Cluster Algebra Structure on the Quantum Grothendieck Ring K_(t-1)
2
作者 Yahia Badawi Bashir Meny 马海涛 杨彦敏 《Chinese Quarterly Journal of Mathematics》 2015年第1期12-19,共8页
In this paper, we give a quantum cluster algebra structure on the deformed Grothendieck ring Kt-1 which is defined in section 2.
关键词 quantum cluster algebra deformed Grothendieck ring
在线阅读 下载PDF
Cluster automorphism groups of cluster algebras with coefficients 被引量:2
3
作者 CHANG Wen ZHU Bin 《Science China Mathematics》 SCIE CSCD 2016年第10期1919-1936,共18页
We study the cluster automorphism group of a skew-symmetric cluster algebra with geometric coefficients. We introduce the notion of gluing free cluster algebra, and show that under a weak condition the cluster automor... We study the cluster automorphism group of a skew-symmetric cluster algebra with geometric coefficients. We introduce the notion of gluing free cluster algebra, and show that under a weak condition the cluster automorphism group of a gluing free cluster algebra is a subgroup of the cluster automorphism group of its principal part cluster algebra(i.e., the corresponding cluster algebra without coefficients). We show that several classes of cluster algebras with coefficients are gluing free, for example, cluster algebras with principal coefficients,cluster algebras with universal geometric coefficients, and cluster algebras from surfaces(except a 4-gon) with coefficients from boundaries. Moreover, except four kinds of surfaces, the cluster automorphism group of a cluster algebra from a surface with coefficients from boundaries is isomorphic to the cluster automorphism group of its principal part cluster algebra; for a cluster algebra with principal coefficients, its cluster automorphism group is isomorphic to the automorphism group of its initial quiver. 展开更多
关键词 cluster algebra cluster automorphism group gluing free cluster algebra cluster algebra from asurface universal geometric cluster algebra
原文传递
Recursive formulas for the Kronecker quantum cluster algebra with principal coefficients 被引量:1
4
作者 Ming Ding Fan Xu Xueqing Chen 《Science China Mathematics》 SCIE CSCD 2023年第9期1933-1948,共16页
We use the quantum version of Chebyshev polynomials to explicitly construct the recursive formulas for the Kronecker quantum cluster algebra with principal coefficients.As a byproduct,we obtain two barinvariant positi... We use the quantum version of Chebyshev polynomials to explicitly construct the recursive formulas for the Kronecker quantum cluster algebra with principal coefficients.As a byproduct,we obtain two barinvariant positive ZP-bases with one being the atomic basis. 展开更多
关键词 quantum cluster algebra cluster variable positive basis
原文传递
Bases of the Quantum Cluster Algebra of the Kronecker Quiver 被引量:1
5
作者 Ming DING Fan XU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第6期1169-1178,共10页
We construct bar-invariant Z[q ±1/2]-bases of the quantum cluster algebra of Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the correspond... We construct bar-invariant Z[q ±1/2]-bases of the quantum cluster algebra of Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the corresponding cluster algebra. As a byproduct, we prove positivity of the elements in these bases. 展开更多
关键词 Quantum cluster algebra Z[q ±1/2]-basis POSITIVITY
原文传递
On structure of cluster algebras of geometric type Ⅰ:In view of sub-seeds and seed homomorphisms 被引量:2
6
作者 Min Huang Fang Li Yichao Yang 《Science China Mathematics》 SCIE CSCD 2018年第5期831-854,共24页
Our motivation is to build a systematic method in order to investigate the structure of cluster algebras of geometric type. The method is given through the notion of mixing-type sub-seeds, the theory of seed homomorph... Our motivation is to build a systematic method in order to investigate the structure of cluster algebras of geometric type. The method is given through the notion of mixing-type sub-seeds, the theory of seed homomorphisms and the view-point of gluing of seeds. As an application, for(rooted) cluster algebras, we completely classify rooted cluster subalgebras and characterize rooted cluster quotient algebras in detail. Also,we build the relationship between the categorification of a rooted cluster algebra and that of its rooted cluster subalgebras. Note that cluster algebras of geometric type studied here are of the sign-skew-symmetric case. 展开更多
关键词 seed homomorphism mixing-type sub-seed rooted cluster morphism sub-rooted cluster algebra rooted cluster quotient algebra
原文传递
Periodicities in Cluster Algebras and Cluster Automorphism Groups
7
作者 Siyang Liu Fang Li 《Algebra Colloquium》 SCIE CSCD 2021年第4期601-624,共24页
We study the relations between two groups related to cluster automorphism groups which are defined by Assem,Schiffler and Shamchenko.We establish the relation-ships among(strict)direct cluster automorphism groups and ... We study the relations between two groups related to cluster automorphism groups which are defined by Assem,Schiffler and Shamchenko.We establish the relation-ships among(strict)direct cluster automorphism groups and those groups consisting of periodicities of labeled seeds and exchange matrices,respectively,in the language of short exact sequences.As an application,we characterize automorphism-finite cluster algebras in the cases of bipartite seeds or finite mutation type.Finally,we study the relation between the group Aut(A)for a cluster algebra A and the group AutMn(S)for a mutation group Mn and a labeled mutation class S,and we give a negative answer via counter-examples to King and Pressland's problem. 展开更多
关键词 cluster algebra MUTATION cluster automorphism group PERIODICITY
原文传递
A quantum analogue of generic bases for affine cluster algebras
8
作者 DING Ming XU Fan 《Science China Mathematics》 SCIE 2012年第10期2045-2066,共22页
We construct quantized versions of generic bases in quantum cluster algebras of finite and affine types.Under the specialization of q and coefficients to 1,these bases are generic bases of finite and affine cluster al... We construct quantized versions of generic bases in quantum cluster algebras of finite and affine types.Under the specialization of q and coefficients to 1,these bases are generic bases of finite and affine cluster algebras. 展开更多
关键词 cluster variable quantum cluster algebra tame quiver
原文传递
Applications of BGP-reflection functors: isomorphisms of cluster algebras 被引量:1
9
作者 ZHU Bin 《Science China Mathematics》 SCIE 2006年第12期1839-1854,共16页
Given a symmetrizable generalized Cartan matrix A, for any index k, one can define an automorphism associated with A, of the field Q(u1,…, un) of rational functions of n independent indeterminates u1,…,un.It is an i... Given a symmetrizable generalized Cartan matrix A, for any index k, one can define an automorphism associated with A, of the field Q(u1,…, un) of rational functions of n independent indeterminates u1,…,un.It is an isomorphism between two cluster algebras associated to the matrix A (see sec. 4 for the precise meaning). When A is of finite type, these isomorphisms behave nicely; they are compatible with the BGP-reflection functors of cluster categories defined in a previous work if we identify the indecomposable objects in the categories with cluster variables of the corresponding cluster algebras, and they are also compatible with the 'truncated simple reflections' defined by Fomin-Zelevinsky. Using the construction of preprojective or preinjective modules of hereditary algebras by DIab-Ringel and the Coxeter automorphisms (i.e. a product of these isomorphisms), we construct infinitely many cluster variables for cluster algebras of infinite type and all cluster variables for finite types. 展开更多
关键词 Coxeter AUTOMORPHISMS of cluster algebras BGP-reflection functors cluster variables.
原文传递
Upper cluster algebras and choice of ground ring
10
作者 Eric Bucher John Machacek Michael Shapiro 《Science China Mathematics》 SCIE CSCD 2019年第7期1257-1266,共10页
We initiate a study of the dependence of the choice of ground ring on the problem on whether a cluster algebra is equal to its upper cluster algebra. A condition for when there is equality of the cluster algebra and u... We initiate a study of the dependence of the choice of ground ring on the problem on whether a cluster algebra is equal to its upper cluster algebra. A condition for when there is equality of the cluster algebra and upper cluster algebra is given by using a variation of Muller's theory of cluster localization. An explicit example exhibiting dependence on the ground ring is provided. We also present a maximal green sequence for this example. 展开更多
关键词 cluster algebraS UPPER cluster algebraS LOCALLY ACYCLIC cluster algebraS
原文传递
Symplectic symmetry approach to clustering in atomic nuclei:the case of ^(24)Mg
11
作者 H G Ganev 《Communications in Theoretical Physics》 2025年第5期118-130,共13页
Symplectic symmetry approach to clustering(SSAC)in atomic nuclei,recently proposed,is modified and further developed in more detail.It is firstly applied to the light two-cluster^(20)Ne+αsystem of^(24)Mg,the latter e... Symplectic symmetry approach to clustering(SSAC)in atomic nuclei,recently proposed,is modified and further developed in more detail.It is firstly applied to the light two-cluster^(20)Ne+αsystem of^(24)Mg,the latter exhibiting well developed low-energy K^(π)=0_(1)^(+),k^(π)=2_(1)^(+) and π^(π)=0_(1)^(-) rotational bands in its spectrum.A simple algebraic Hamiltonian,consisting of dynamical symmetry,residual and vertical mixing parts is used to describe these three lowest rotational bands of positive and negative parity in^(24)Mg.A good description of the excitation energies is obtained by considering only the SU(3)cluster states restricted to the stretched many-particle Hilbert subspace,built on the leading Pauli allowed SU(3)multiplet for the positive-and negative-parity states,respectively.The coupling to the higher cluster-model configurations allows us to describe the known low-lying experimentally observed B(E2)transition probabilities within and between the cluster states of the three bands under consideration without the use of an effective charge. 展开更多
关键词 symplectic symmetry approach to clustering algebraic cluster model microscopic cluster model
原文传递
Anisotropic Spin Cluster as a Qubit
12
作者 YAN Xiao-Bo WANG Ming-Ji Electronic Science Institute,Daqing Petroleum Institute,Daqing 163318,China 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第7期90-92,共3页
We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interactionwith non-uniform coupling constants.A time-dependent magnetic field is applied to control the time evolution of... We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interactionwith non-uniform coupling constants.A time-dependent magnetic field is applied to control the time evolution of thecluster.It is well known that for an odd number of sites a spin cluster qubit can be defined in terms of the ground statedoublet.The universal one-qubit logic gate can be constructed from the time evolution operator of the non-autonomousmany-body system,and the six basic one-qubit gates can be realized by adjusting the applied time-dependent magneticfield. 展开更多
关键词 algebraic dynamics anisotropic spin cluster universal one-qubit logic gate
在线阅读 下载PDF
丛代数换位图具有非离开面性的■-系统证明
13
作者 任艳栏 谢云丽 《山东大学学报(理学版)》 北大核心 2025年第5期79-86,92,共9页
利用丛代数中的变异映射和Bongartz余完备化映射与相应■-系统中的变异映射和Bongartz余完备化映射的相容性及■-系统上的组合结果构造所需的投射,从而证明任意丛代数的换位图具有非离开面性。
关键词 丛代数 非离开面性 ■-系统 换位图
原文传递
A_(n)型丛代数几何实现的一个应用
14
作者 张宝金 唐孝敏 《东北师大学报(自然科学版)》 北大核心 2025年第3期7-11,共5页
对一个三角剖分赋予箭图并给出η型丛代数的几何实现,证明了这个箭图的变异与三角剖分的变异可交换.给出了A_(n)型丛代数的正根集合与其箭图的连通子图集之间的一个双射,并将这个丛代数的非初始丛变量映为另一个有限A型丛代数.
关键词 丛代数 三角剖分与箭图的交换性 箭图突变 根系
在线阅读 下载PDF
基于正态分布相似性的双视角点云配准方法
15
作者 李朝龙 庞善民 +2 位作者 王超玉 王翌丰 史鹏程 《浙江大学学报(工学版)》 北大核心 2025年第6期1179-1190,共12页
针对现有“点到点”双视角点云配准算法效率慢、精度低的问题,提出基于正态分布相似性的双视角点云配准方法.将传统“点到点”配准问题转化为“分布到分布”配准问题,利用K-means聚类算法生成若干正态分布聚簇来拟合原始点云数据,再对... 针对现有“点到点”双视角点云配准算法效率慢、精度低的问题,提出基于正态分布相似性的双视角点云配准方法.将传统“点到点”配准问题转化为“分布到分布”配准问题,利用K-means聚类算法生成若干正态分布聚簇来拟合原始点云数据,再对这些正态分布聚簇进行配准,从而降低计算开销,提升配准效率;将Kullback-Leibler散度引入最近邻匹配正态分布的相似性评估,从而削弱非重叠数据区域对配准的负面影响,提升配准精度.使用李代数求解器来获取最终的配准结果.为了验证所提方法的有效性,选取其他8种双视角点云配准方法进行比对,其中包含多种“点到点”配准方法.结果表明,本研究所提算法在保持较低计算开销的同时,有效提升了配准的稳定性和精确性.在2个数据集上进行真实场景实验,证明了本研究所提算法在真实环境配准任务上拥有较好的应用潜力. 展开更多
关键词 双视角配准 部分重叠配准 正态分布变换 K-MEANS聚类算法 Kullback-Leibler散度 李代数求解器
在线阅读 下载PDF
基于栅格距离变换的扩展对象空间聚类方法 被引量:10
16
作者 耿协鹏 杜晓初 胡鹏 《测绘学报》 EI CSCD 北大核心 2009年第2期162-167,174,共7页
空间聚类是空间分析和空间数据挖掘的重要方法和研究内容。在地图代数中,通过建立栅格坐标与距离平方对应的栅格平方平面,计算栅格空间的最短距离,实现栅格距离变换。以栅格空间距离变换为基础,通过提取特征等距线,揭示简单的空间点集... 空间聚类是空间分析和空间数据挖掘的重要方法和研究内容。在地图代数中,通过建立栅格坐标与距离平方对应的栅格平方平面,计算栅格空间的最短距离,实现栅格距离变换。以栅格空间距离变换为基础,通过提取特征等距线,揭示简单的空间点集聚类过程,并将这种算法扩展到点、线、面实体混合分布空间,以及加权距离以及障碍空间的空间聚类。算法分析表明该算法简单、合理。 展开更多
关键词 空间聚类 地图代数 栅格距离变换
在线阅读 下载PDF
基于最短欧氏距离的空间点集聚类的栅格算法 被引量:5
17
作者 耿协鹏 胡鹏 《测绘科学》 CSCD 北大核心 2008年第3期35-37,共3页
空间聚类是GIS空间分析的主要内容之一,传统矢量空间聚类算法存在数据冗余、结果不直观等弊端,地图代数栅格距离变换结果图本身就蕴涵了空间客体之间的拓扑关系,通过提取距离变换结果图不同距离值的等距线,就可以实现基于最短欧氏距离... 空间聚类是GIS空间分析的主要内容之一,传统矢量空间聚类算法存在数据冗余、结果不直观等弊端,地图代数栅格距离变换结果图本身就蕴涵了空间客体之间的拓扑关系,通过提取距离变换结果图不同距离值的等距线,就可以实现基于最短欧氏距离的空间对象的聚类过程,本文通过算例试验证明,该算法简单、直观、合理。 展开更多
关键词 空间聚类 地图代数 距离变换
在线阅读 下载PDF
基于Fiedler矢量的分布式自适应分簇算法 被引量:5
18
作者 黄庆东 闫乔乔 孙晴 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2017年第3期301-306,共6页
针对无线传感器网络分簇(clustering)问题,提出一种基于Fiedler矢量的分布式分簇改进算法。该算法利用Fiedler矢量的元素符号特性对网络进行递归分簇处理,引入网络拓扑信息,根据网络自身的内部连接自适应决定分簇数目,通过Fiedler矢量... 针对无线传感器网络分簇(clustering)问题,提出一种基于Fiedler矢量的分布式分簇改进算法。该算法利用Fiedler矢量的元素符号特性对网络进行递归分簇处理,引入网络拓扑信息,根据网络自身的内部连接自适应决定分簇数目,通过Fiedler矢量的元素数值选出簇头,并且算法给簇头子集筛选合适的网关节点以确保簇头子集的连通性。仿真实验表明,在共识频谱感知的基础上,该算法生成的簇头子集与全网络共识所收敛的结果相同,簇头子集共识收敛速度相对更快,耗时短,能够以更好的时效性、更高的能效达到与全网络共识收敛相同的效果。 展开更多
关键词 移动AD HOC网络 Fiedler矢量 分簇算法 代数连通度
在线阅读 下载PDF
~*EI代数上的拓扑分子格及其在聚类分析中的应用 被引量:2
19
作者 邱望仁 丁蕊 刘晓东 《模糊系统与数学》 CSCD 北大核心 2006年第3期150-157,共8页
在AFS代数和AFS结构的基础上,通过对AFS代数上的拓扑分子格结构的讨论,给出了EM中,由一些模糊概念生成的拓扑分子格所诱导出的X上拓扑的几点性质,并利用这些性质,对一个实际例子构造了隶属函数进行聚类分析,说明了这些性质在聚类分析中... 在AFS代数和AFS结构的基础上,通过对AFS代数上的拓扑分子格结构的讨论,给出了EM中,由一些模糊概念生成的拓扑分子格所诱导出的X上拓扑的几点性质,并利用这些性质,对一个实际例子构造了隶属函数进行聚类分析,说明了这些性质在聚类分析中的应用。 展开更多
关键词 邻域 AFS结构 EI代数 聚类分析
在线阅读 下载PDF
模糊聚类分析和代数算法结合的短期负荷预测 被引量:9
20
作者 周虎 江岳春 +2 位作者 陈旭 黄珊 彭信淞 《电力系统及其自动化学报》 CSCD 北大核心 2011年第3期101-105,共5页
为了提高短期负荷预测速度和精度,提出了将模糊聚类分析和神经网络代数算法相结合的短期负荷预测方法。综合考虑天气、日类型、历史负荷等对未来负荷变化的影响,通过模糊聚类分析选取学习样本,找出同预测日相符的预测类别,采用神经网络... 为了提高短期负荷预测速度和精度,提出了将模糊聚类分析和神经网络代数算法相结合的短期负荷预测方法。综合考虑天气、日类型、历史负荷等对未来负荷变化的影响,通过模糊聚类分析选取学习样本,找出同预测日相符的预测类别,采用神经网络代数算法训练样本,对24小时负荷(24点)每点建立一个预测模型。该方法充分发挥了神经网络和模糊理论处理非线性问题的能力,提高了学习效能,而且克服了传统BP算法存在的缺点。算例分析结果表明该方法有较高的预测精度,取得了令人满意的结果。 展开更多
关键词 短期负荷预测 模糊聚类分析 神经网络代数算法 反向传播算法
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部