期刊文献+
共找到3,101篇文章
< 1 2 156 >
每页显示 20 50 100
Efficient and lightweight 3D building reconstruction from drone imagery using sparse line and point clouds
1
作者 Xiongjie YIN Jinquan HE Zhanglin CHENG 《虚拟现实与智能硬件(中英文)》 2025年第2期111-126,共16页
Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a n... Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a novel method for efficient and lightweight 3D building reconstruction from drone imagery using line clouds and sparse point clouds.Our approach eliminates the need to generate dense point clouds,and thus significantly reduces the computational burden by reconstructing 3D models directly from sparse data.We addressed the limitations of line clouds for plane detection and reconstruction by using a new algorithm.This algorithm projects 3D line clouds onto a 2D plane,clusters the projections to identify potential planes,and refines them using sparse point clouds to ensure an accurate and efficient model reconstruction.Extensive qualitative and quantitative experiments demonstrated the effectiveness of our method,demonstrating its superiority over existing techniques in terms of simplicity and efficiency. 展开更多
关键词 3D reconstruction Line clouds Sparse clouds Lightweight models
在线阅读 下载PDF
Effect of Scattered Solar Radiation on the Informativeness of Polarization Lidar Studies of High-Level Clouds
2
作者 Ignatii Samokhvalov Ilia Bryukhanov +5 位作者 Ivan Akimov Olesia Kuchinskaia Maxim Penzin Denis Romanov Evgeny Ni Ivan Zhivotenyuk 《Journal of Environmental & Earth Sciences》 2025年第6期148-156,共9页
During daylight laser polarization sensing of high-level clouds(HLCs),the lidar receiving system generates a signal caused by not only backscattered laser radiation,but also scattered solar radiation,the intensity and... During daylight laser polarization sensing of high-level clouds(HLCs),the lidar receiving system generates a signal caused by not only backscattered laser radiation,but also scattered solar radiation,the intensity and polarization of which depends on the Sun’s location.If a cloud contains spatially oriented ice particles,then it becomes anisotropic,that is,the coefficients of directional light scattering of such a cloud depend on the Sun’s zenith and azimuth angles.In this work,the possibility of using the effect of anisotropic scattering of solar radiation on the predictive ability of machine learning algorithms in solving the problem of predicting the HLC backscattering phase matrix(BSPM)was evaluated.The hypothesis that solar radiation scattered on HLCs has no effect on the BSPM elements of such clouds determined with a polarization lidar was tested.The operation of two algorithms for predicting the BSPM elements is evaluated.To train the first one,meteorological data were used as input parameters;for the second algorithm,the azi-muthal and zenith angles of the Sun’s position were added to the meteorological parameters.It is shown that there is no significant improvement in the predictive ability of the algorithm. 展开更多
关键词 High-Level clouds(HLCs) Polarization Lidar Backscattering Phase Matrix(BSPM) Sun’s Azimuthal and Zenith Angles Scattered Solar Radiation Cloud Microphysics Machine Learning(ML) Random Forest
在线阅读 下载PDF
Visible and shortwave-infrared spectral characteristics of mixed-phase clouds in typical satellite radiometer channels
3
作者 Lijun Hu Bin Yao +3 位作者 Shiwen Teng Byung-Ju Sohn Hongchun Jin Chao Liu 《Atmospheric and Oceanic Science Letters》 2025年第4期67-72,共6页
Mixed-phase clouds(MPCs)involve complex microphysical and dynamical processes of cloud formation and dissipation,which are crucial for numerical weather prediction and cloud-climate feedback.However,satellite remote s... Mixed-phase clouds(MPCs)involve complex microphysical and dynamical processes of cloud formation and dissipation,which are crucial for numerical weather prediction and cloud-climate feedback.However,satellite remote sensing of MPC properties is still challenging,and there is seldom MPC result inferred from passive spectral observations.This study examines the spectral characteristics of MPCs in the shortwave-infrared(SWIR)channels over the wavelength of 0.4–2.5μm,and evaluates the potential of current operational satellite spectroradiometer channels for MPC retrievals.With optical properties of MPCs based on the assumption of uniform mixing of both ice and liquid water particles,the effects of MPC ice optical thickness fraction(IOTF)and effective radius on associated optical properties are analyzed.As expected,results indicate that the MPC optical properties show features for ice and liquid water clouds,and their spectral variations show noticeable differences from those for homogeneous cases.A radiative transfer method is employed to examine the sensitivity of SWIR channels to given MPC cloud water path(CWP)and IOTF.MPCs have unique signal characteristics in the SWIR spectrum.The 0.87-μm channel is most sensitive to CWP.Meanwhile,the 1.61-and 2.13-μm channels are more sensitive to water-dominated MPCs(IOTF approaching 0),and the 2.25-μm channel is sensitive to both water-dominated and ice-dominated MPCs(IOTF approaching 1).Such spectral differences are potentially possible to be used to infer MPC properties based on radiometer observations,which will be investigated in future studies. 展开更多
关键词 Mixed-phase clouds Spectral characteristics Optical properties Satellite retrieval Shortwave infrared
在线阅读 下载PDF
A human-machine interaction method for rock discontinuities mapping by three-dimensional point clouds with noises
4
作者 Qian Chen Yunfeng Ge +3 位作者 Changdong Li Huiming Tang Geng Liu Weixiang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1646-1663,共18页
Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca... Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features. 展开更多
关键词 Rock discontinuities Three-dimensional(3D)point clouds Discontinuity identification Orientation measurement Human-machine interaction
在线阅读 下载PDF
The Soft X-Ray Emission Surrounding Starburst-driven High-velocity Molecular Clouds in the Galactic Center
5
作者 Pei-Xin Zhu Miao Li Meng-Fei Zhang 《Research in Astronomy and Astrophysics》 2025年第12期85-104,共20页
This study numerically investigates the formation of high-velocity molecular clouds(HVMCs)in the Galactic Center(GC)based on the X-ray emission analysis.We employ three-dimensional magnetohydrodynamic simulations to e... This study numerically investigates the formation of high-velocity molecular clouds(HVMCs)in the Galactic Center(GC)based on the X-ray emission analysis.We employ three-dimensional magnetohydrodynamic simulations to explore the propagation and acceleration of HVMCs with starburst-driven winds,considering vertical,horizontal,and no magnetic field scenarios.Our results reveal that the envelope gas(with a typical T~10~8 K and density~10^(-2)cm^(-3))of molecular clouds(MCs)as a result of the shock interaction is responsible for X-ray emission.Additionally,some clear boundary exists between the interstellar medium(ISM),envelope gas and MCs,and the envelope gas protects the MCs in the heated environment of the shock wave.In theory,it is challenging to distinguish between the envelope gas,MCs and ISM in terms of X-ray emission.Our simulations suggest that the envelope gas has a significant impact on the survival and emission characteristics of MCs,providing insights into the complex interactions from the supernova feedback mechanisms in the GC. 展开更多
关键词 methods:data analysis Galaxy:center galaxies:starburst radiation mechanisms:thermal ISM:clouds ISM:lines and bands
在线阅读 下载PDF
Rock discontinuity extraction from 3D point clouds using pointwise clustering algorithm
6
作者 Xiaoyu Yi Wenxuan Wu +2 位作者 Wenkai Feng Yongjian Zhou Jiachen Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4429-4444,共16页
Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected ... Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds. 展开更多
关键词 Rock mass discontinuity 3D point clouds Pointwise clustering(PWC)algorithm Modified whale optimization algorithm(MWOA)
在线阅读 下载PDF
Identification and automatic recognition of discontinuities from 3D point clouds of rock mass exposure
7
作者 Peitao Wang Boran Huang +1 位作者 Yijun Gao Meifeng Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4982-5000,共19页
Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of disco... Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of discontinuities,a self-developed code termed as the cloud-group-cluster(CGC)method based on MATLAB for mapping and detecting discontinuities based on the 3DPC was introduced.The identification and optimization of discontinuity groups were performed using three key parameters,i.e.K,θ,and f.A sensitivity analysis approach for identifying the optimal key parameters was introduced.The results show that the comprehensive analysis of the main discontinuity groups,mean orientations,and densities could be achieved automatically.The accuracy of the CGC method was validated using tetrahedral and hexahedral models.The 3D point cloud data were divided into three levels(point cloud,group,and cluster)for analysis,and this three-level distribution recognition was applied to natural rock surfaces.The densities and spacing information of the principal discontinuities were automatically detected using the CGC method.Five engineering case studies were conducted to validate the CGC method,showing the applicability in detecting rock discontinuities based on 3DPC model. 展开更多
关键词 Rock mass Point cloud Rock discontinuities Semi-automatic detection
在线阅读 下载PDF
Research on Reverse Modeling of Parametric CAD Models from Multi-View RGB-D Point Clouds
8
作者 Yangzhi Zhang 《Journal of Electronic Research and Application》 2025年第6期313-320,共8页
Existing reverse-engineering methods struggle to directly generate editable,parametric CAD models from scanned data.To address this limitation,this paper proposes a reverse-modeling approach that reconstructs parametr... Existing reverse-engineering methods struggle to directly generate editable,parametric CAD models from scanned data.To address this limitation,this paper proposes a reverse-modeling approach that reconstructs parametric CAD models from multi-view RGB-D point clouds.Multi-frame point-cloud registration and fusion are first employed to obtain a complete 3-D point cloud of the target object.A region-growing algorithm that jointly exploits color and geometric information segments the cloud,while RANSAC robustly detects and fits basic geometric primitives.These primitives serve as nodes in a graph whose edge features are inferred by a graph neural network to capture spatial constraints.From the detected primitives and their constraints,a high-accuracy,fully editable parametric CAD model is finally exported.Experiments show an average parameter error of 0.3 mm for key dimensions and an overall geometric reconstruction accuracy of 0.35 mm.The work offers an effective technical route toward automated,intelligent 3-D reverse modeling. 展开更多
关键词 CAD model RGB-D point cloud Reverse modeling Geometric information Region-growing algorithm
在线阅读 下载PDF
Control model for burning-bubble clouds formed by confined meltcast explosives under thermal stimulation
9
作者 Zhi Li Zhuoping Duan +4 位作者 Zhiling Bai Jixuan Jiao Liji Xu Liansheng Zhang Fenglei Huang 《Defence Technology(防务技术)》 2025年第6期268-283,共16页
DNAN-based insensitive melt-cast explosives have been widely utilized in insensitive munition in recent years. When constrained DNAN-based melt-cast explosives are ignited under thermal stimulation, the base explosive... DNAN-based insensitive melt-cast explosives have been widely utilized in insensitive munition in recent years. When constrained DNAN-based melt-cast explosives are ignited under thermal stimulation, the base explosive exists in a molten liquid state, where high-temperature gases expand and react in the form of bubble clouds within the liquid explosive;this process is distinctly different from the dynamic crack propagation process observed in the case of solid explosives. In this study, a control model for the reaction evolution of burning-bubble clouds was established to describe the reaction process and quantify the reaction violence of DNAN-based melt-cast explosives, considering the size distribution and activation mechanism of the burning-bubble clouds. The feasibility of the model was verified through experimental results. The results revealed that under geometrically similar conditions, with identical confinement strength and aspect ratio, larger charge structures led to extended initial gas flow and surface burning processes, resulting in greater reaction equivalence and violence at the casing fracture.Under constant charge volume and size, a stronger casing confinement accelerated self-enhanced burning, increasing the internal pressure, reaction degree, and reaction violence. Under a constant casing thickness and radius, higher aspect ratios led to a greater reaction violence at the casing fracture.Moreover, under a constant charge volume and casing thickness, higher aspect ratios resulted in a higher internal pressure, increased reaction degree, and greater reaction violence at the casing fracture. Further,larger ullage volumes extended the reaction evolution time and increased the reaction violence under constant casing dimensions. Through a matching design of the opening threshold of the pressure relief holes and the relief structure area, a stable burning reaction could be maintained until completion,thereby achieving a control of the reaction violence. The proposed model could effectively reflect the effects of the intrinsic burning rate, casing confinement strength, charge size, ullage volume, and pressure relief structure on the reaction evolution process and reaction violence, providing a theoretical method for the thermal safety design and reaction violence evaluation of melt-cast explosives. 展开更多
关键词 Melt-cast explosives Non-shock-initiated reaction Self-sustaining enhanced combustion Burning-bubble cloud model Pressure relief area Reaction violence
在线阅读 下载PDF
The net warming effect of clouds on global surface temperature may be weakening or even disappearing
10
作者 Chuanye Shi Tianxing Wang +1 位作者 Gaofeng Wang Husi Letu 《Geoscience Frontiers》 2025年第5期97-107,共11页
Climate change is significantly influenced by both clouds and Earth’s surface temperature(EST).While numerous studies have investigated clouds and EST separately,the extent of clouds’impact on EST remains unclear.Ba... Climate change is significantly influenced by both clouds and Earth’s surface temperature(EST).While numerous studies have investigated clouds and EST separately,the extent of clouds’impact on EST remains unclear.Based on the inspiration and limitation of cloud radiative effect(CRE),this study provides a pioneering attempt to propose a novel indicator,cloud radiative effect on surface temperature(CREST),aiming to quantify how clouds affect EST globally while also analyzing the physical mechanism.Using reanalysis and remotely sensed data,a phased machine learning scheme in combination of surface energy balance theory is proposed to estimate EST under all-sky and hypothetical clear-sky conditions in stages,thereby estimating the newly defined CREST by subtracting the hypothetical clear-sky EST from the all-sky EST.The inter-annual experiments reveal the significant spatial heterogeneity in CREST across land,ocean,and ice/snow regions.As a global offset of the heterogeneity,clouds exhibit a net warming effect on global surface temperature on an annual scale(e.g.,0.26 K in 1981),despite their ability to block sunlight.However,the net warming effect has gradually weakened to nearly zero over the past four decades(e.g.,only 0.06 K in 2021),and it’s even possible to transform into a cooling effect,which might be good news for mitigating the global warming. 展开更多
关键词 Cloud radiative effect Earth’s surface temperature Climate change Surface energy balance
在线阅读 下载PDF
A New Mechanism Based on Similar Clouds Watermark for Database’s Information Security 被引量:4
11
作者 HUANG Min CAO Jia-heng +1 位作者 PENG Zhi-yong ZENG Cheng 《Wuhan University Journal of Natural Sciences》 CAS 2004年第4期415-419,共5页
This paper studies the digit watermark technology of numeric attributes in relational database for database's information security.It proposes a new mechanism based on similar clouds watermark and gives the concep... This paper studies the digit watermark technology of numeric attributes in relational database for database's information security.It proposes a new mechanism based on similar clouds watermark and gives the concept of similar clouds.The algorithm SCWA that can insert the meaning watermark and detect it from the watermarked data is described.The mechanism can effectively and broadly scatter the watermark in the database;therefore the watermark is very robust. 展开更多
关键词 copyright protection digit watermark similar clouds clouds model
在线阅读 下载PDF
Deep Convective Clouds over the Northern Pacific and Their Relationship with Oceanic Cyclones 被引量:2
12
作者 YI Mingjian FU Yunfei +1 位作者 LIU Peng ZHENG Zhixia 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期821-830,共10页
Based on combined CloudSat/CALIPSO detections, the seasonal occurrence of deep convective clouds (DCCs) over the midlatitude North Pacific (NP) and cyclonic activity in winter were compared. In winter, DCCs are mo... Based on combined CloudSat/CALIPSO detections, the seasonal occurrence of deep convective clouds (DCCs) over the midlatitude North Pacific (NP) and cyclonic activity in winter were compared. In winter, DCCs are more frequent over the central NP, from approximately 30~N to 45~N, than over other regions. The high frequencies are roughly equal to those occurring in this region in summer. Most of these DCCs have cloud tops above a 12 km altitude, and the highest top is approximately 15 km. These wintertime marine DCCs commonly occur during surface circulation conditions of low pressure, high temperature, strong meridional wind, and high relative humidity. Further, the maximum probability of DCCs, according to the high correlation coefficient, was found in the region 10^-20~ east and 5^-10~ south of the center of the cyclones. The potential relationship between DCCs and cyclones regarding their relative locations and circulation conditions was also identified by a case study. Deep clouds were generated in the warm conveyor belt by strong updrafts from baroclinic flows. The updrafts intensified when latent heat was released during the adjustment of the cyclone circulation current. This indicates that the dynamics of cyclones are the primary energy source for DCCs over the NP in winter. 展开更多
关键词 cloudsAT deep convective clouds marine cyclones northern Pacific
在线阅读 下载PDF
The Physical Nature of H_2CO Clouds in Dark Clouds, B5 and L1535
13
作者 Y.K. Minn 1, Y.B.Lee 2 1 (Kyung Hee University, Yong in 499-701, Korea) 2 (Seoul National University of Education, Seoul 137-742, Korea) 《天文研究与技术》 CSCD 1999年第S1期250-254,共5页
By fitting the data of the H 2CO 2 mm (140 GHz and 150 GHz), 2cm (1 45GHz) and, 6 cm (4 3GHz) lines we observed in the dark clouds, B5 and L1535, to the values calculated by the hydrostatic equitlibrium polytropic mod... By fitting the data of the H 2CO 2 mm (140 GHz and 150 GHz), 2cm (1 45GHz) and, 6 cm (4 3GHz) lines we observed in the dark clouds, B5 and L1535, to the values calculated by the hydrostatic equitlibrium polytropic model developed by B.E. Turner, we derived the total density, the fractional abundance of H 2CO, the column densities of H 2 and CO, the line temperature arising from various transitions, the line temperature ratio between different transitions, and visual extinction at the cores of the clouds. We also examined the effect of external UV field intensity on the line temperatures and their ratios. 展开更多
关键词 NATURE CO The Physical Nature of H2CO clouds in B5 and L1535 Dark clouds
在线阅读 下载PDF
Fundamentals on Thermodynamic Processes behind Clouds’ and Rainfalls’ Formation
14
作者 Mbane Biouele César 《Atmospheric and Climate Sciences》 2015年第3期257-265,共9页
The prevailing idea so far about why the rainfall occurs was that after agglutination of water droplets with condensation nuclei, the size of the particle formed by the condensation nuclei connected with droplets of w... The prevailing idea so far about why the rainfall occurs was that after agglutination of water droplets with condensation nuclei, the size of the particle formed by the condensation nuclei connected with droplets of water increased considerably and caused its fall. This idea has led to numerous scientific publications in which empirical distribution functions of clouds’ water droplets sizes were proposed. Estimates values provided by these empirical distribution functions, in most cases, were validated by comparison with UHF Radar measurements. The condensation nuclei concept has not been sufficiently exploited and this has led meteorologists to error, in their attempt to describe the clouds, thinking that clouds were formed by liquid water droplets. Indeed, MBANE BIOUELE paradox (2005) confirms this embarrassing situation. In fact, when applying Archimedes theorem to a liquid water droplet suspended in the atmosphere, we obtain a meaningless inequality ?which makes believe that the densities of pure water in liquid and solid phases are much lower than that of the atmosphere considered at the sea level. This meaningless inequality is easy to contradict: of course, if you empty a bottle of pure liquid water in the ocean (where z is equal to 0), this water will not remain suspended in the air, i.e., application of Archimedes’ theorem allows realizing that there is no liquid (or solid) water droplet, suspended in the clouds. Indeed, all liquid (or solid) water droplets which are formed in clouds, fall under the effect of gravity and produce rains. This means that our current description of the clouds is totally wrong. In this study, we describe the clouds as a gas composed of dry air and saturated water vapor whose optical properties depend on temperature, i.e., when the temperature of a cloud decreases, the color of this gaseous system tends towards white. 展开更多
关键词 Condensation NUCLEI clouds FORMATION Thermodynamic Processes MBANE BIOUELE PARADOX clouds CANNOT Be Composed of Suspended Liquid (or Solid) Water Droplets
暂未订购
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:27
15
作者 Tianchu Zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
在线阅读 下载PDF
On the Radiative Properties of Ice Clouds:Light Scattering, Remote Sensing,and Radiation Parameterization 被引量:13
16
作者 Ping YANG Kuo-Nan LIOU +3 位作者 Lei BI Chao LIU Bingqi YI Bryan A.BAUM 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第1期32-63,共32页
Presented is a review of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensing applications, and broadband radiation parameterizations appropriate for numerical ... Presented is a review of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensing applications, and broadband radiation parameterizations appropriate for numerical models. On the subject of light scattering simulations, several classical computational approaches are reviewed, including the conventional geometric-optics method and its improved forms, the finite-difference time domain technique, the pseudo-spectral time domain technique, the discrete dipole approximation method, and the T-matrix method, with specific applications to the computation of the singlescattering properties of individual ice crystals. The strengths and weaknesses associated with each approach are discussed.With reference to remote sensing, operational retrieval algorithms are reviewed for retrieving cloud optical depth and effective particle size based on solar or thermal infrared(IR) bands. To illustrate the performance of the current solar- and IR-based retrievals, two case studies are presented based on spaceborne observations. The need for a more realistic ice cloud optical model to obtain spectrally consistent retrievals is demonstrated. Furthermore, to complement ice cloud property studies based on passive radiometric measurements, the advantage of incorporating lidar and/or polarimetric measurements is discussed.The performance of ice cloud models based on the use of different ice habits to represent ice particles is illustrated by comparing model results with satellite observations. A summary is provided of a number of parameterization schemes for ice cloud radiative properties that were developed for application to broadband radiative transfer submodels within general circulation models(GCMs). The availability of the single-scattering properties of complex ice habits has led to more accurate radiation parameterizations. In conclusion, the importance of using nonspherical ice particle models in GCM simulations for climate studies is proven. 展开更多
关键词 ice clouds light scattering remote sensing radiative property parameterization
在线阅读 下载PDF
A modified method of discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces 被引量:14
17
作者 Keshen Zhang Wei Wu +3 位作者 Hehua Zhu Lianyang Zhang Xiaojun Li Hong Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期571-586,共16页
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by... This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases. 展开更多
关键词 Rock mass DISCONTINUITY Three-dimensional point clouds Trace mapping
在线阅读 下载PDF
Vertical Structures of Convective and Stratiform Clouds in Boreal Summer over the Tibetan Plateau and Its Neighboring Regions 被引量:9
18
作者 Yafei YAN Yimin LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第10期1089-1102,I0001,I0002,共16页
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical pro... Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models. 展开更多
关键词 cloudsat/CALIPSO cloud vertical structures CONVECTIVE PRECIPITATION STRATIFORM PRECIPITATION TIBETAN Plateau
在线阅读 下载PDF
Filtering of Airborne Lidar Point Clouds for Complex Cityscapes 被引量:6
19
作者 JIANG Jingjue ZHANG Zuxun MING Ying 《Geo-Spatial Information Science》 2008年第1期21-25,共5页
A novel filtering algorithm for Lidar point clouds is presented, which can work well for complex cityscapes. Its main features are filtering based on raw Lidar point clouds without previous triangulation or rasterizat... A novel filtering algorithm for Lidar point clouds is presented, which can work well for complex cityscapes. Its main features are filtering based on raw Lidar point clouds without previous triangulation or rasterization. 3D topological relations among points are used to search edge points at the top of discontinuities, which are key information to recognize the bare earth points and building points. Experiment results show that the proposed algorithm can preserve discontinuous features in the bare earth and has no impact of size and shape of buildings. 展开更多
关键词 FILTERING SEGMENTATION laser scanning LIDAR point clouds
在线阅读 下载PDF
Experiment Study of the Evolution of Coral Sand Particle Clouds in Water 被引量:5
20
作者 CHEN Jie YAO Zhen +4 位作者 JIANG Chang-bo WU Zhi-yuan DENG Bin LONG Yuan-nan BIAN Cheng 《China Ocean Engineering》 SCIE EI CSCD 2022年第5期720-733,共14页
The motion of particle clouds(i.e.,sediment clouds)usually can be found in engineering applications such as wastewater discharge,land reclamation,and marine bed capping.In this paper,a series of laboratory tests are c... The motion of particle clouds(i.e.,sediment clouds)usually can be found in engineering applications such as wastewater discharge,land reclamation,and marine bed capping.In this paper,a series of laboratory tests are conducted on coral sand to investigate the shape feature of the single particle and the mixing processes of the coral sand particle clouds.The shape of coral sand particle is measured and quantified.The experimental results demonstrate that the shape of coral sand particles tends to be spherical as the particle size decreases,and empirical equations were established to explain the variation of D50 and fS,50 of coral sand.Compared with the silica sand,the evolution of the coral sand particle cloud still experiences three stages,but the threshold for the Reynolds number of particle clouds entering the next stage changes.Further,the normalized axial distance of the coral sand particle clouds is 58%smaller.The frontal velocity exhibits similar varying tendency for the coral sand particle cloud.Considering the difference in shape between coral sand particles and silica sand particles,a semi-empirical formula was proposed based on the original silica sand prediction formula by adding the shape factor and the experimental data of 122μm≤D_(50)≤842μm.It can predict the frontal velocity of the coral sand particle clouds. 展开更多
关键词 coral sand dredged material particle clouds THERMAL particle shape sediment disposal
在线阅读 下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部