Can the“Roof of the world”Mount Qomolangma(MQ)serve as a“natural laboratory”for the activation effect of aerosols on the cloud-precipitation process?Here,we carried out the vertical observations of aerosols,clouds...Can the“Roof of the world”Mount Qomolangma(MQ)serve as a“natural laboratory”for the activation effect of aerosols on the cloud-precipitation process?Here,we carried out the vertical observations of aerosols,clouds,and precipitation at the MQ,where the dual-radar active remote sensing technique is integrated with precipitation observation for the first time.It is found from the observational study that during the Indian summer monsoon,aerosols from South Asia have a distinct activation effect on the cloud-precipitation process over the MQ.Under dynamic lifting,the increase in aerosols,which inhibits and delays weak precipitation over the MQ,instead intensifies the development of clouds over the MQ,leading to heavy precipitation on the north slope.The synergy of the MQ thermal-dynamic driving mechanism and the aerosol activation effect can trigger the deep convection in the precipitation process on the north slope of the MQ.Cloud development is more intense with the aerosol activation effect,and the diurnal cycle of convective clouds in the vertical change over the MQ presents a lag response to changing aerosols.From the perspective of climate impact on interannual variations,it can also be found that the frequency of light rain over the MQ present the significantly decreased trend,while the frequency of moderate to heavy precipitation on the north slope has a significantly increased trend,revealing the differentiated changes in the precipitation on the south and north slopes of the MQ under the influence of the aerosol activation effect on the cloud-precipitation process.展开更多
The scientific foundation of artificial weather modification is rneso- and small-scale dynamics and cloud-precipitation microphysics. Artificial weather modification requires the realistic coupling of weather patterns...The scientific foundation of artificial weather modification is rneso- and small-scale dynamics and cloud-precipitation microphysics. Artificial weather modification requires the realistic coupling of weather patterns, dynamical pro- cesses, and microphysical processes. Now that numerical models with weather dynamical characteristics have been widely applied to artificial weather modification, several key points that should not be neglected when developing numerical models for artificial weather modification are proposed in this paper, including the dynamical equations, model resolution, cloud-precipitation microphysical processes, numerical computation method, and initial and boundary conditions. Based on several examples, approaches are offered to deal with the problems that exist in these areas.展开更多
Downburst is a very dangerous weather phenomenon for aeroplane taking off or landing. In order to understand the initial formation and evolution of downburst and to study the effects of at- mospheric environment condi...Downburst is a very dangerous weather phenomenon for aeroplane taking off or landing. In order to understand the initial formation and evolution of downburst and to study the effects of at- mospheric environment condition and the microstructure of cloud-precipitation particles on the downburst development processes, we have designed and carried out a modeling scheme by making use of our own non-hydrostatic compressible mesoscale-γ model including necessary cloud-precipi- tation processes. The initial conditions of temperature, humidity and wind are from an observation case in which the downburst occurred. The results of computations demonstrate the evolution of downburst and show the variation of various environmental and microphysical parameters. Some of the mechanisms about the downburst occurrence have been obtained. Computation results may help airport forecasters to determine the occurrence of downburst better.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,2019QZKK0105)the Major Science and Technology Project of Xizang Autonomous Region(XZ202402ZD0006-06).
文摘Can the“Roof of the world”Mount Qomolangma(MQ)serve as a“natural laboratory”for the activation effect of aerosols on the cloud-precipitation process?Here,we carried out the vertical observations of aerosols,clouds,and precipitation at the MQ,where the dual-radar active remote sensing technique is integrated with precipitation observation for the first time.It is found from the observational study that during the Indian summer monsoon,aerosols from South Asia have a distinct activation effect on the cloud-precipitation process over the MQ.Under dynamic lifting,the increase in aerosols,which inhibits and delays weak precipitation over the MQ,instead intensifies the development of clouds over the MQ,leading to heavy precipitation on the north slope.The synergy of the MQ thermal-dynamic driving mechanism and the aerosol activation effect can trigger the deep convection in the precipitation process on the north slope of the MQ.Cloud development is more intense with the aerosol activation effect,and the diurnal cycle of convective clouds in the vertical change over the MQ presents a lag response to changing aerosols.From the perspective of climate impact on interannual variations,it can also be found that the frequency of light rain over the MQ present the significantly decreased trend,while the frequency of moderate to heavy precipitation on the north slope has a significantly increased trend,revealing the differentiated changes in the precipitation on the south and north slopes of the MQ under the influence of the aerosol activation effect on the cloud-precipitation process.
基金Supported by the National Natural Science Foundation of China(41405006)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406003 and GYHY201506002)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2014R016 and 2015Z003)
文摘The scientific foundation of artificial weather modification is rneso- and small-scale dynamics and cloud-precipitation microphysics. Artificial weather modification requires the realistic coupling of weather patterns, dynamical pro- cesses, and microphysical processes. Now that numerical models with weather dynamical characteristics have been widely applied to artificial weather modification, several key points that should not be neglected when developing numerical models for artificial weather modification are proposed in this paper, including the dynamical equations, model resolution, cloud-precipitation microphysical processes, numerical computation method, and initial and boundary conditions. Based on several examples, approaches are offered to deal with the problems that exist in these areas.
基金The project is supported by the National Natural Science Foundation of China
文摘Downburst is a very dangerous weather phenomenon for aeroplane taking off or landing. In order to understand the initial formation and evolution of downburst and to study the effects of at- mospheric environment condition and the microstructure of cloud-precipitation particles on the downburst development processes, we have designed and carried out a modeling scheme by making use of our own non-hydrostatic compressible mesoscale-γ model including necessary cloud-precipi- tation processes. The initial conditions of temperature, humidity and wind are from an observation case in which the downburst occurred. The results of computations demonstrate the evolution of downburst and show the variation of various environmental and microphysical parameters. Some of the mechanisms about the downburst occurrence have been obtained. Computation results may help airport forecasters to determine the occurrence of downburst better.