Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In th...Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In this study,an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate(PMMA)composite electrode(MP-TENG)is proposed for use in wireless human health monitor.The multifunctional tile-nanostructured MXene/PMMA film,which is self-assembled through vacuum filtration,exhibits good conductivity,excellent charge capacity,and high flexibility.Thus,the MXene/PMMA composite electrode can simultaneously function as a charge-generating,charge-trapping,and charge-collecting layer.Furthermore,the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration.At a mass fraction of 4%PMMA,the MP-TENG achieves the optimal output performance,with an output voltage of 37.8 V,an output current of 1.8μA,and transferred charge of 14.1 nC.The output power is enhanced over twofold compared with the pure MXene-based TENG.Moreover,the MP-TENG has sufficient power capacity and durability to power small electronic devices.Finally,a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions.Consequently,the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring,telemedicine,and self-powered systems.展开更多
为了探究Vector 3D Tiles格式在三维矢量地物表达方面的效果和性能,研究了一套Vector 3D Tiles格式生产和表达工具,用于在Cesium平台上对矢量数据进行可视化展示。主要工作包括两部分:一是将数据从传统的矢量格式转换为Vector 3D Tiles...为了探究Vector 3D Tiles格式在三维矢量地物表达方面的效果和性能,研究了一套Vector 3D Tiles格式生产和表达工具,用于在Cesium平台上对矢量数据进行可视化展示。主要工作包括两部分:一是将数据从传统的矢量格式转换为Vector 3D Tiles格式,二是在Cesium平台上展示转换后的Vector 3D Tiles数据。为了验证方法可行性,采用广州市地下管线数据开展了实验,对Shapefile、GeoJSON二维矢量格式进行处理,生成Vector 3D Tiles格式后,在Cesium平台上进行三维可视化展示。通过不同格式数据的加载效率和呈现效果比较,证明了矢量切片数据比原始矢量格式加载更快、渲染更平滑。在此基础上,对矢量切片数据基于自定义三维样式的渲染能力进行了验证。展开更多
Based on the high integration and low profile application requirements of phased array systems, a Ku band 64-element tile type transceiver component was developed. Through the high-density integrated 3D design concept...Based on the high integration and low profile application requirements of phased array systems, a Ku band 64-element tile type transceiver component was developed. Through the high-density integrated 3D design concept, the 64-element transceiver channels are arranged in a rectangular grid array, and the functional circuits are horizontally arranged and vertically integrated, achieving the low profile characteristics of the components. Detailed introductions were provided on the key circuit design, structural design, and thermal design of the components. Through physical testing, the single channel receiving gain of the transceiver component is ≥6 dB, and the noise figure is ≤3.5 dB;Single channel transmission gain ≥ 4 dB, transmission saturation output power ≥ 22 dBm;Each channel can independently achieve 6-bit phase shift and 4-bit attenuation functions. The phase consistency of 64 channels is better than 7°, and the amplitude consistency is better than 0.6 dB. The component size is 100 mm × 84 mm × 13.1 mm, with a mass of less than 150 g. This transceiver component has a standardized architecture and can flexibly achieve large-scale array expansion.展开更多
基金supported by the National Natural Science Foundation of China(No.52201043,T2125003,12174172)the Natural Science Foundation of Fujian(Nos.2020J01857)+1 种基金the Fuzhou Institute of Oceanography project(No.2021F06)the Fuzhou City Science and Technology Cooperation Project(2021-S-091,2022-R-003)
文摘Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In this study,an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate(PMMA)composite electrode(MP-TENG)is proposed for use in wireless human health monitor.The multifunctional tile-nanostructured MXene/PMMA film,which is self-assembled through vacuum filtration,exhibits good conductivity,excellent charge capacity,and high flexibility.Thus,the MXene/PMMA composite electrode can simultaneously function as a charge-generating,charge-trapping,and charge-collecting layer.Furthermore,the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration.At a mass fraction of 4%PMMA,the MP-TENG achieves the optimal output performance,with an output voltage of 37.8 V,an output current of 1.8μA,and transferred charge of 14.1 nC.The output power is enhanced over twofold compared with the pure MXene-based TENG.Moreover,the MP-TENG has sufficient power capacity and durability to power small electronic devices.Finally,a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions.Consequently,the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring,telemedicine,and self-powered systems.
文摘为了探究Vector 3D Tiles格式在三维矢量地物表达方面的效果和性能,研究了一套Vector 3D Tiles格式生产和表达工具,用于在Cesium平台上对矢量数据进行可视化展示。主要工作包括两部分:一是将数据从传统的矢量格式转换为Vector 3D Tiles格式,二是在Cesium平台上展示转换后的Vector 3D Tiles数据。为了验证方法可行性,采用广州市地下管线数据开展了实验,对Shapefile、GeoJSON二维矢量格式进行处理,生成Vector 3D Tiles格式后,在Cesium平台上进行三维可视化展示。通过不同格式数据的加载效率和呈现效果比较,证明了矢量切片数据比原始矢量格式加载更快、渲染更平滑。在此基础上,对矢量切片数据基于自定义三维样式的渲染能力进行了验证。
文摘Based on the high integration and low profile application requirements of phased array systems, a Ku band 64-element tile type transceiver component was developed. Through the high-density integrated 3D design concept, the 64-element transceiver channels are arranged in a rectangular grid array, and the functional circuits are horizontally arranged and vertically integrated, achieving the low profile characteristics of the components. Detailed introductions were provided on the key circuit design, structural design, and thermal design of the components. Through physical testing, the single channel receiving gain of the transceiver component is ≥6 dB, and the noise figure is ≤3.5 dB;Single channel transmission gain ≥ 4 dB, transmission saturation output power ≥ 22 dBm;Each channel can independently achieve 6-bit phase shift and 4-bit attenuation functions. The phase consistency of 64 channels is better than 7°, and the amplitude consistency is better than 0.6 dB. The component size is 100 mm × 84 mm × 13.1 mm, with a mass of less than 150 g. This transceiver component has a standardized architecture and can flexibly achieve large-scale array expansion.