The rapid progress of cloud technology has attracted a growing number of video providers to consider deploying their streaming services onto cloud platform for more cost-effective, scalable and reliable performance. I...The rapid progress of cloud technology has attracted a growing number of video providers to consider deploying their streaming services onto cloud platform for more cost-effective, scalable and reliable performance. In this paper, we utilize Markov decision process model to formulate the dynamic deployment of cloud-based video services over multiple geographically distributed datacenters. We focus on maximizing the average profits for the video service provider over a long run and introduce an average performance criteria which reflects the cost and user experience jointly. We develop an optimal algorithm based on the sensitivity analysis and sample-based policy iteration to obtain the optimal video placement and request dispatching strategy. We demonstrate the optimality of our algorithm with theoretical proof and specify the practical feasibility of our algorithm. We conduct simulations to evaluate the performance of our algorithm and the results show that our strategy can effectively cut down the total cost and guarantee users' quality of experience (QoE).展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
Cloud-based video communication and networking has emerged as a promising new research paradigm to significantly improve the quality of experience for video consumers.An architectural overview of this promising resear...Cloud-based video communication and networking has emerged as a promising new research paradigm to significantly improve the quality of experience for video consumers.An architectural overview of this promising research area was presented.This overview with an end-to-end partition of the cloud-based video system into major blocks with respect to their locations from the center of the cloud to the edge of the cloud was started.Following this partition,existing research efforts on how the principles of cloud computing can provide unprecedented support to 1)video servers,2)content delivery networks,and 3)edge networks within the global cloud video ecosystems were examined.Moreover,a case study was exemplfied on an edge cloud assisted HTTP adaptive video streaming to demonstrate the effectiveness of cloud computing support.Finally,by envisioning a list of future research topics in cloud-based video communication and networking a coclusion is made.展开更多
The integration of 5G technology with cloud-based control systems in industrial robots holds significant promise for the future of industrial automation.With its ultra-low latency,high data transfer speeds,and massive...The integration of 5G technology with cloud-based control systems in industrial robots holds significant promise for the future of industrial automation.With its ultra-low latency,high data transfer speeds,and massive connectivity,5G is poised to revolutionize real-time communication and coordination in manufacturing environments.This paper explores the prospects and challenges of applying 5G technology in industrial robots,focusing on cloud-based control systems that enable scalable,flexible,and efficient operations.Key advantages of 5G,including improved communication speed,enhanced real-time control,scalability,and predictive maintenance capabilities,are discussed.However,the transition to 5G also presents challenges,such as network reliability,security concerns,integration with legacy systems,and high implementation costs.The paper also examines case studies in the automotive,electronics,and aerospace industries,providing real-world examples of 5G adoption in industrial automation.The conclusion highlights key insights and outlines potential research directions for overcoming existing barriers and fully realizing the potential of 5G technology in industrial robot control.展开更多
The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved...The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.展开更多
This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including th...This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including the design of experiments,surrogate models,model validation and selection,prediction,optimization,and sensitivity analysis.Moreover,it also includes an exclusive ensemble surrogate modeling technique,the extended hybrid adaptive function,which can make use of the advantages of each surrogate and eliminate the effort of selecting the appropriate individual surrogate.To improve ease of use,DADOS provides a user-friendly graphical user interface and employed flow-based programming so that users can conduct design optimization just by dragging,dropping,and connecting algorithm blocks into a workflow instead of writing massive code.In addition,DADOS allows users to visualize the results to gain more insights into the design problems,allows multi-person collaborating on a project at the same time,and supports multi-disciplinary optimization.This paper also details the architecture and the user interface of DADOS.Two examples were employed to demonstrate how to use DADOS to conduct data-driven design optimization.Since DADOS is a cloud-based system,anyone can access DADOS at www.dados.com.cn using their web browser without the need for installation or powerful hardware.展开更多
With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issu...With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issue. In this paper, we present an access control system with privilege separation based on privacy protection(PS-ACS). In the PS-ACS scheme, we divide users into private domain(PRD) and public domain(PUD) logically. In PRD, to achieve read access permission and write access permission, we adopt the Key-Aggregate Encryption(KAE) and the Improved Attribute-based Signature(IABS) respectively. In PUD, we construct a new multi-authority ciphertext policy attribute-based encryption(CP-ABE) scheme with efficient decryption to avoid the issues of single point of failure and complicated key distribution, and design an efficient attribute revocation method for it. The analysis and simulation result show that our scheme is feasible and superior to protect users' privacy in cloud-based services.展开更多
Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite net...Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite networks,and good communication quality of terrestrial networks.Thanks to the complementary coverage characteristics,any-time and anywhere high-speed communications can be achieved to meet the various needs of users.The scarcity of spectrum resources is a common prob-lem in both satellite and terrestrial networks.In or-der to improve resource utilization,the spectrum is shared not only within each component but also be-tween satellite beams and terrestrial cells,which intro-duces inter-component interferences.To this end,this paper first proposes an analytical framework which considers the inter-component interferences induced by spectrum sharing(SS).An intelligent SS scheme based on radio map(RM)consisting of LSTM-based beam prediction(BP),transfer learning-based spec-trum prediction(SP)and joint non-preemptive prior-ity and preemptive priority(J-NPAP)-based propor-tional fair spectrum allocation is than proposed.The simulation result shows that the spectrum utilization rate of CB-STSSN is improved and user blocking rate and waiting probability are decreased by the proposed scheme.展开更多
An e-tag used on the freeway is a kind of passive sensors composed of sensors and radio- frequency identification (RFID) tags. The principle of the electronic toll collection system is that the sensor emits radio wa...An e-tag used on the freeway is a kind of passive sensors composed of sensors and radio- frequency identification (RFID) tags. The principle of the electronic toll collection system is that the sensor emits radio waves touching the e-tag within a certain range, the e-tag will respond to the radio waves by induction, and the sensor will read and write information of the vehicles. Although the RFID technology is popularly used in campus management systems, there is no e-tag technology application used in a campus parking system. In this paper, we use the e-tag technology on a campus parking management system based on the cloud-based construction. By this, it helps to achieve automated and standardized management of the campus parking system, enhance management efficiency, reduce the residence time of the vehicles at the entrances and exits, and improve the efficiency of vehicles parked at the same time.展开更多
Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy...Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy in cloud computing environment and ignore the impact of mixed redundancy strategies.Therefore,a model is proposed to evaluate and optimize the reliability and performance of cloud-based degraded systems subject to a mixed active and cold standby redundancy strategy.In this strategy,node switching is triggered by a continual monitoring and detection mechanism when active nodes fail.To evaluate the transient availability and the expected job completion rate of systems with such kind of strategy,a continuous-time Markov chain model is built on the state transition process and a numerical method is used to solve the model.To choose the optimal redundancy for the mixed strategy under system constraints,a greedy search algorithm is proposed after sensitivity analysis.Illustrative examples were presented to explain the process of calculating the transient probability of each system state and in turn,the availability and performance of the whole system.It was shown that the near-optimal redundancy solution could be obtained using the optimizationmethod.The comparison with optimization of the traditional mixed redundancy strategy proved that the system behavior was different using different kinds of mixed strategies and less redundancy was assigned for the new type of mixed strategy under the same system constraint.展开更多
The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profile...The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.展开更多
Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing int...Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods.展开更多
Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as ...Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as trauma,inflammation,or anatomical abnormalities airway management becomes challenging.A commonly utilized method to overcome this challenge is the use of video laryngoscopy(VL),which employs a specialized device equipped with a camera and a light source to allow a clear view of the larynx and vocal cords.VL overcomes the limitations of direct laryngoscopy in patients with limited mouth opening,enabling better visualization and successful intubation.Various types of VL blades are available.We devised a novel flangeless video laryngoscope for use in patients with a limited mouth opening and then tested it on a manikin.展开更多
Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial fo...Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial for scene understanding. However, a challenge many semantic learning models face is the lack of data. Existing video datasets are limited to short, low-resolution videos that are not representative of real-world examples. Thus, one of our key contributions is a customized semantic segmentation version of the Walking Tours Dataset that features hour-long, high-resolution, real-world data from tours of different cities. Additionally, we evaluate the performance of open-vocabulary, semantic model OpenSeeD on our own custom dataset and discuss future implications.展开更多
Objective: The purpose of this study was to evaluate health education using videos and leaflets for preconception care (PCC) awareness among adolescent females up to six months after the health education. Methods: The...Objective: The purpose of this study was to evaluate health education using videos and leaflets for preconception care (PCC) awareness among adolescent females up to six months after the health education. Methods: The subjects were female university students living in the Kinki area. A longitudinal survey was conducted on 67 members in the intervention group, who received the health education, and 52 members in the control group, who did not receive the health education. The primary outcome measures were knowledge of PCC and the subscales of the Health Promotion Lifestyle Profile. Surveys were conducted before, after, and six months after the intervention in the intervention group, and an initial survey and survey six months later were conducted in the control group. Cochran’s Q test, Bonferroni’s multiple comparison test, and McNemar’s test were used to analyze the knowledge of PCC data. The Health Awareness, Nutrition, and Stress Management subscales of the Health Promotion Lifestyle Profile were analyzed by paired t-test, and comparisons between the intervention and control groups were performed using the two-way repeated measures analysis of variance. Results: In the intervention group of 67 people, the number of subjects who answered “correct” for five of the nine items concerning knowledge of PCC increased immediately after the health education (P = 0.006) but decreased for five items from immediately after the health education to six months later (P = 0.043). In addition, the number of respondents who answered “correct” for “low birth weight infants and future lifestyle-related diseases” (P = 0.016) increased after six months compared with before the health education. For the 52 subjects in the control group, there was no change in the number of subjects who answered “correct” for eight out of the nine items after six months. There was also no increase in scores for the Health Promotion Lifestyle Profile after six months for either the intervention or control group. Conclusion: Providing health education about PCC using videos and leaflets to adolescent females was shown to enhance the knowledge of PCC immediately after the education.展开更多
Antarctic clouds and their vertical structures play a significant role in influencing the regional radiation budget and ice mass balance;however,substantial uncertainties persist.Continuous monitoring and research are...Antarctic clouds and their vertical structures play a significant role in influencing the regional radiation budget and ice mass balance;however,substantial uncertainties persist.Continuous monitoring and research are essential for enhancing our understanding of these clouds.This study presents an analysis of cloud occurrence frequency and cloud-base heights(CBHs)at Zhongshan Station in East Antarctica for the first time,utilizing data from a C12 ceilometer covering the period from January 2022 to December 2023.The findings indicate that low clouds dominate at Zhongshan Station,with an average cloud occurrence frequency of 75%.Both the cloud occurrence frequency and CBH distribution exhibit distinct seasonal variations.Specifically,the cloud occurrence frequency during winter is higher than that observed in summer,while winter clouds can develop to greater heights.Over the Southern Ocean,the cloud occurrence frequency during summer surpasses that at Zhongshan Station,with clouds featuring lower CBHs and larger extinction coefficients.Furthermore,it is noteworthy that CBHs derived from the ceilometer are basically consistent with those obtained from radiosondes.Importantly,ERA5 demonstrates commendable performance in retrieving CBHs at Zhongshan Station when compared with ceilometer measurements.展开更多
Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semant...Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings.展开更多
The application of short videos in agricultural scenarios has become a new form of productive force driving agricultural development,injecting new vitality and opportunities into traditional agriculture.These videos l...The application of short videos in agricultural scenarios has become a new form of productive force driving agricultural development,injecting new vitality and opportunities into traditional agriculture.These videos leverage the unique expressive logic of the platform by adopting a small entry point and prioritizing dissemination rate.They are strategically planned in terms of content,visuals,and interaction to cater to users needs for relaxation,knowledge acquisition,social sharing,agricultural product marketing,and talent display.Through careful design,full creativity,rich emotion,and the creation of distinct character personalities,these videos deliver positive,entertaining,informative,and opinion-driven agricultural content.The production and operation of agricultural short videos can be effectively optimized by analyzing the characteristics of both popular and less popular videos,and utilizing smart tools and trending topics.展开更多
Objectives:Short video addiction has emerged as a significant public health issue in recent years,with a growing trend toward severity.However,research on the causes and impacts of short video addiction remains limite...Objectives:Short video addiction has emerged as a significant public health issue in recent years,with a growing trend toward severity.However,research on the causes and impacts of short video addiction remains limited,and understanding of the variable“TikTok brain”is still in its infancy.Therefore,based on the Stimulus-Organism-Behavior-Consequence(SOBC)framework,we proposed six research hypotheses and constructed a model to explore the relationships between short video usage intensity,TikTok brain,short video addiction,and decreased attention control.Methods:Given that students are considered a high-risk group for excessive short video use,we collected 1086 valid participants from Chinese student users,including 609 males(56.1%)and 477 females(43.9%),with an average participant age of 19.84 years,to test the hypotheses.Results:(1)Short video usage intensity was positively related to short video addiction,TikTok brain,and decreased attention control;(2)TikTok brain was positively related to short video addiction and decreased attention control;and(3)Short video addiction was positively related to decreased attention control.Conclusions:These findings suggest that although excessive use of short video applications brings negative consequences,users still spend significant amounts of time on these platforms,indicating a need for strict self-regulation of usage time.展开更多
基金supported by the State Key Program of National Natural Science Foundation of China(No.61233003)National Natural Science Foundation of China(No.61503358)
文摘The rapid progress of cloud technology has attracted a growing number of video providers to consider deploying their streaming services onto cloud platform for more cost-effective, scalable and reliable performance. In this paper, we utilize Markov decision process model to formulate the dynamic deployment of cloud-based video services over multiple geographically distributed datacenters. We focus on maximizing the average profits for the video service provider over a long run and introduce an average performance criteria which reflects the cost and user experience jointly. We develop an optimal algorithm based on the sensitivity analysis and sample-based policy iteration to obtain the optimal video placement and request dispatching strategy. We demonstrate the optimality of our algorithm with theoretical proof and specify the practical feasibility of our algorithm. We conduct simulations to evaluate the performance of our algorithm and the results show that our strategy can effectively cut down the total cost and guarantee users' quality of experience (QoE).
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金supported by National Science Foundation Grants(ECCS-1405594).
文摘Cloud-based video communication and networking has emerged as a promising new research paradigm to significantly improve the quality of experience for video consumers.An architectural overview of this promising research area was presented.This overview with an end-to-end partition of the cloud-based video system into major blocks with respect to their locations from the center of the cloud to the edge of the cloud was started.Following this partition,existing research efforts on how the principles of cloud computing can provide unprecedented support to 1)video servers,2)content delivery networks,and 3)edge networks within the global cloud video ecosystems were examined.Moreover,a case study was exemplfied on an edge cloud assisted HTTP adaptive video streaming to demonstrate the effectiveness of cloud computing support.Finally,by envisioning a list of future research topics in cloud-based video communication and networking a coclusion is made.
文摘The integration of 5G technology with cloud-based control systems in industrial robots holds significant promise for the future of industrial automation.With its ultra-low latency,high data transfer speeds,and massive connectivity,5G is poised to revolutionize real-time communication and coordination in manufacturing environments.This paper explores the prospects and challenges of applying 5G technology in industrial robots,focusing on cloud-based control systems that enable scalable,flexible,and efficient operations.Key advantages of 5G,including improved communication speed,enhanced real-time control,scalability,and predictive maintenance capabilities,are discussed.However,the transition to 5G also presents challenges,such as network reliability,security concerns,integration with legacy systems,and high implementation costs.The paper also examines case studies in the automotive,electronics,and aerospace industries,providing real-world examples of 5G adoption in industrial automation.The conclusion highlights key insights and outlines potential research directions for overcoming existing barriers and fully realizing the potential of 5G technology in industrial robot control.
文摘The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.
基金Supported by National Key Research and Development Program of China (Grant No.2018YFB1700704)National Natural Science Foundation of China (Grant No.52075068)。
文摘This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including the design of experiments,surrogate models,model validation and selection,prediction,optimization,and sensitivity analysis.Moreover,it also includes an exclusive ensemble surrogate modeling technique,the extended hybrid adaptive function,which can make use of the advantages of each surrogate and eliminate the effort of selecting the appropriate individual surrogate.To improve ease of use,DADOS provides a user-friendly graphical user interface and employed flow-based programming so that users can conduct design optimization just by dragging,dropping,and connecting algorithm blocks into a workflow instead of writing massive code.In addition,DADOS allows users to visualize the results to gain more insights into the design problems,allows multi-person collaborating on a project at the same time,and supports multi-disciplinary optimization.This paper also details the architecture and the user interface of DADOS.Two examples were employed to demonstrate how to use DADOS to conduct data-driven design optimization.Since DADOS is a cloud-based system,anyone can access DADOS at www.dados.com.cn using their web browser without the need for installation or powerful hardware.
基金financially supported by the National Natural Science Foundation of China(No.61303216,No.61272457,No.U1401251,and No.61373172)the National High Technology Research and Development Program of China(863 Program)(No.2012AA013102)National 111 Program of China B16037 and B08038
文摘With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issue. In this paper, we present an access control system with privilege separation based on privacy protection(PS-ACS). In the PS-ACS scheme, we divide users into private domain(PRD) and public domain(PUD) logically. In PRD, to achieve read access permission and write access permission, we adopt the Key-Aggregate Encryption(KAE) and the Improved Attribute-based Signature(IABS) respectively. In PUD, we construct a new multi-authority ciphertext policy attribute-based encryption(CP-ABE) scheme with efficient decryption to avoid the issues of single point of failure and complicated key distribution, and design an efficient attribute revocation method for it. The analysis and simulation result show that our scheme is feasible and superior to protect users' privacy in cloud-based services.
基金the National Nat-ural Science Foundation of China under Grants 61771163the Natural Science Foundation for Out-standing Young Scholars of Heilongjiang Province un-der Grant YQ2020F001the Science and Technol-ogy on Communication Networks Laboratory under Grants SXX19641X072 and SXX18641X028.(Cor-respondence author:Min Jia)。
文摘Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite networks,and good communication quality of terrestrial networks.Thanks to the complementary coverage characteristics,any-time and anywhere high-speed communications can be achieved to meet the various needs of users.The scarcity of spectrum resources is a common prob-lem in both satellite and terrestrial networks.In or-der to improve resource utilization,the spectrum is shared not only within each component but also be-tween satellite beams and terrestrial cells,which intro-duces inter-component interferences.To this end,this paper first proposes an analytical framework which considers the inter-component interferences induced by spectrum sharing(SS).An intelligent SS scheme based on radio map(RM)consisting of LSTM-based beam prediction(BP),transfer learning-based spec-trum prediction(SP)and joint non-preemptive prior-ity and preemptive priority(J-NPAP)-based propor-tional fair spectrum allocation is than proposed.The simulation result shows that the spectrum utilization rate of CB-STSSN is improved and user blocking rate and waiting probability are decreased by the proposed scheme.
文摘An e-tag used on the freeway is a kind of passive sensors composed of sensors and radio- frequency identification (RFID) tags. The principle of the electronic toll collection system is that the sensor emits radio waves touching the e-tag within a certain range, the e-tag will respond to the radio waves by induction, and the sensor will read and write information of the vehicles. Although the RFID technology is popularly used in campus management systems, there is no e-tag technology application used in a campus parking system. In this paper, we use the e-tag technology on a campus parking management system based on the cloud-based construction. By this, it helps to achieve automated and standardized management of the campus parking system, enhance management efficiency, reduce the residence time of the vehicles at the entrances and exits, and improve the efficiency of vehicles parked at the same time.
基金supported by the National Natural Science Foundation of China(Grant No.61309005)the Basic and Frontier Research Program of Chongqing(Grant No.cstc2014jcyj A40015)
文摘Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy in cloud computing environment and ignore the impact of mixed redundancy strategies.Therefore,a model is proposed to evaluate and optimize the reliability and performance of cloud-based degraded systems subject to a mixed active and cold standby redundancy strategy.In this strategy,node switching is triggered by a continual monitoring and detection mechanism when active nodes fail.To evaluate the transient availability and the expected job completion rate of systems with such kind of strategy,a continuous-time Markov chain model is built on the state transition process and a numerical method is used to solve the model.To choose the optimal redundancy for the mixed strategy under system constraints,a greedy search algorithm is proposed after sensitivity analysis.Illustrative examples were presented to explain the process of calculating the transient probability of each system state and in turn,the availability and performance of the whole system.It was shown that the near-optimal redundancy solution could be obtained using the optimizationmethod.The comparison with optimization of the traditional mixed redundancy strategy proved that the system behavior was different using different kinds of mixed strategies and less redundancy was assigned for the new type of mixed strategy under the same system constraint.
基金supported by National Natural Science Foundation of China(62072416)Key Research and Development Special Project of Henan Province(221111210500)Key TechnologiesR&DProgram of Henan rovince(232102211053,242102211071).
文摘The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.
基金Shenzhen Science and Technology Programme,Grant/Award Number:JCYJ202308071208000012023 Shenzhen sustainable supporting funds for colleges and universities,Grant/Award Number:20231121165240001Guangdong Provincial Key Laboratory of Ultra High Definition Immersive Media Technology,Grant/Award Number:2024B1212010006。
文摘Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods.
文摘Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as trauma,inflammation,or anatomical abnormalities airway management becomes challenging.A commonly utilized method to overcome this challenge is the use of video laryngoscopy(VL),which employs a specialized device equipped with a camera and a light source to allow a clear view of the larynx and vocal cords.VL overcomes the limitations of direct laryngoscopy in patients with limited mouth opening,enabling better visualization and successful intubation.Various types of VL blades are available.We devised a novel flangeless video laryngoscope for use in patients with a limited mouth opening and then tested it on a manikin.
文摘Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial for scene understanding. However, a challenge many semantic learning models face is the lack of data. Existing video datasets are limited to short, low-resolution videos that are not representative of real-world examples. Thus, one of our key contributions is a customized semantic segmentation version of the Walking Tours Dataset that features hour-long, high-resolution, real-world data from tours of different cities. Additionally, we evaluate the performance of open-vocabulary, semantic model OpenSeeD on our own custom dataset and discuss future implications.
文摘Objective: The purpose of this study was to evaluate health education using videos and leaflets for preconception care (PCC) awareness among adolescent females up to six months after the health education. Methods: The subjects were female university students living in the Kinki area. A longitudinal survey was conducted on 67 members in the intervention group, who received the health education, and 52 members in the control group, who did not receive the health education. The primary outcome measures were knowledge of PCC and the subscales of the Health Promotion Lifestyle Profile. Surveys were conducted before, after, and six months after the intervention in the intervention group, and an initial survey and survey six months later were conducted in the control group. Cochran’s Q test, Bonferroni’s multiple comparison test, and McNemar’s test were used to analyze the knowledge of PCC data. The Health Awareness, Nutrition, and Stress Management subscales of the Health Promotion Lifestyle Profile were analyzed by paired t-test, and comparisons between the intervention and control groups were performed using the two-way repeated measures analysis of variance. Results: In the intervention group of 67 people, the number of subjects who answered “correct” for five of the nine items concerning knowledge of PCC increased immediately after the health education (P = 0.006) but decreased for five items from immediately after the health education to six months later (P = 0.043). In addition, the number of respondents who answered “correct” for “low birth weight infants and future lifestyle-related diseases” (P = 0.016) increased after six months compared with before the health education. For the 52 subjects in the control group, there was no change in the number of subjects who answered “correct” for eight out of the nine items after six months. There was also no increase in scores for the Health Promotion Lifestyle Profile after six months for either the intervention or control group. Conclusion: Providing health education about PCC using videos and leaflets to adolescent females was shown to enhance the knowledge of PCC immediately after the education.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC2802501)the National Natural Science Foundation of China(Grant Nos.42175154 and 42305084)+1 种基金the Hunan Provincial Natural Science Foundation of China(Grant No.2024JJ2058)Research Project of the National University of Defense Technology(Grant No.202401-YJRC-XX-030)。
文摘Antarctic clouds and their vertical structures play a significant role in influencing the regional radiation budget and ice mass balance;however,substantial uncertainties persist.Continuous monitoring and research are essential for enhancing our understanding of these clouds.This study presents an analysis of cloud occurrence frequency and cloud-base heights(CBHs)at Zhongshan Station in East Antarctica for the first time,utilizing data from a C12 ceilometer covering the period from January 2022 to December 2023.The findings indicate that low clouds dominate at Zhongshan Station,with an average cloud occurrence frequency of 75%.Both the cloud occurrence frequency and CBH distribution exhibit distinct seasonal variations.Specifically,the cloud occurrence frequency during winter is higher than that observed in summer,while winter clouds can develop to greater heights.Over the Southern Ocean,the cloud occurrence frequency during summer surpasses that at Zhongshan Station,with clouds featuring lower CBHs and larger extinction coefficients.Furthermore,it is noteworthy that CBHs derived from the ceilometer are basically consistent with those obtained from radiosondes.Importantly,ERA5 demonstrates commendable performance in retrieving CBHs at Zhongshan Station when compared with ceilometer measurements.
基金supported by the National Natural Science Foundation of China (Nos. NSFC 61925105, 62322109, 62171257 and U22B2001)the Xplorer Prize in Information and Electronics technologiesthe Tsinghua University (Department of Electronic Engineering)-Nantong Research Institute for Advanced Communication Technologies Joint Research Center for Space, Air, Ground and Sea Cooperative Communication Network Technology
文摘Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings.
文摘The application of short videos in agricultural scenarios has become a new form of productive force driving agricultural development,injecting new vitality and opportunities into traditional agriculture.These videos leverage the unique expressive logic of the platform by adopting a small entry point and prioritizing dissemination rate.They are strategically planned in terms of content,visuals,and interaction to cater to users needs for relaxation,knowledge acquisition,social sharing,agricultural product marketing,and talent display.Through careful design,full creativity,rich emotion,and the creation of distinct character personalities,these videos deliver positive,entertaining,informative,and opinion-driven agricultural content.The production and operation of agricultural short videos can be effectively optimized by analyzing the characteristics of both popular and less popular videos,and utilizing smart tools and trending topics.
基金supported by the International Joint Research Project of Huiyan International College,Faculty of Education,Beijing Normal University(Grant Number:ICER202102).
文摘Objectives:Short video addiction has emerged as a significant public health issue in recent years,with a growing trend toward severity.However,research on the causes and impacts of short video addiction remains limited,and understanding of the variable“TikTok brain”is still in its infancy.Therefore,based on the Stimulus-Organism-Behavior-Consequence(SOBC)framework,we proposed six research hypotheses and constructed a model to explore the relationships between short video usage intensity,TikTok brain,short video addiction,and decreased attention control.Methods:Given that students are considered a high-risk group for excessive short video use,we collected 1086 valid participants from Chinese student users,including 609 males(56.1%)and 477 females(43.9%),with an average participant age of 19.84 years,to test the hypotheses.Results:(1)Short video usage intensity was positively related to short video addiction,TikTok brain,and decreased attention control;(2)TikTok brain was positively related to short video addiction and decreased attention control;and(3)Short video addiction was positively related to decreased attention control.Conclusions:These findings suggest that although excessive use of short video applications brings negative consequences,users still spend significant amounts of time on these platforms,indicating a need for strict self-regulation of usage time.