With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare re...With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
The rapid processing,analysis,and mining of remote-sensing big data based on intelligent interpretation technology using remote-sensing cloud computing platforms(RS-CCPs)have recently become a new trend.The existing R...The rapid processing,analysis,and mining of remote-sensing big data based on intelligent interpretation technology using remote-sensing cloud computing platforms(RS-CCPs)have recently become a new trend.The existing RS-CCPs mainly focus on developing and optimizing high-performance data storage and intelligent computing for common visual representation,which ignores remote sensing data characteristics such as large image size,large-scale change,multiple data channels,and geographic knowledge embedding,thus impairing computational efficiency and accuracy.We construct a LuoJiaAI platform composed of a standard large-scale sample database(LuoJiaSET)and a dedicated deep learning framework(LuoJiaNET)to achieve state-of-the-art performance on five typical remote sensing interpretation tasks,including scene classification,object detection,land-use classification,change detection,and multi-view 3D reconstruction.The details of the LuoJiaAI application experiment can be found at the white paper for LuoJiaAI industrial application.In addition,LuoJiaAI is an open-source RS-CCP that supports the latest Open Geospatial Consortium(OGC)standards for better developing and sharing Earth Artificial Intelligence(AI)algorithms and products on benchmark datasets.LuoJiaAI narrows the gap between the sample database and deep learning frameworks through a user-friendly data-framework collaboration mechanism,showing great potential in high-precision remote sensing mapping applications.展开更多
This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model...This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.展开更多
Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institut...Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.展开更多
Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data...Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest.展开更多
Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satell...Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.展开更多
Antarctic clouds and their vertical structures play a significant role in influencing the regional radiation budget and ice mass balance;however,substantial uncertainties persist.Continuous monitoring and research are...Antarctic clouds and their vertical structures play a significant role in influencing the regional radiation budget and ice mass balance;however,substantial uncertainties persist.Continuous monitoring and research are essential for enhancing our understanding of these clouds.This study presents an analysis of cloud occurrence frequency and cloud-base heights(CBHs)at Zhongshan Station in East Antarctica for the first time,utilizing data from a C12 ceilometer covering the period from January 2022 to December 2023.The findings indicate that low clouds dominate at Zhongshan Station,with an average cloud occurrence frequency of 75%.Both the cloud occurrence frequency and CBH distribution exhibit distinct seasonal variations.Specifically,the cloud occurrence frequency during winter is higher than that observed in summer,while winter clouds can develop to greater heights.Over the Southern Ocean,the cloud occurrence frequency during summer surpasses that at Zhongshan Station,with clouds featuring lower CBHs and larger extinction coefficients.Furthermore,it is noteworthy that CBHs derived from the ceilometer are basically consistent with those obtained from radiosondes.Importantly,ERA5 demonstrates commendable performance in retrieving CBHs at Zhongshan Station when compared with ceilometer measurements.展开更多
On 20 April 1994,China made its first o!cial full-function connection to the World Wide Web through a 64-kilobyte international leased line,marking the country’s formal entry into the global digital age.The year 2024...On 20 April 1994,China made its first o!cial full-function connection to the World Wide Web through a 64-kilobyte international leased line,marking the country’s formal entry into the global digital age.The year 2024 marked the 30th anniversary of the country’s entry into the internet era.展开更多
In the last decade,shell biorefinery,a novel concept referring to the extraction of the main components of crustacean shells and the transformation of each component into valuable products,was proposed and has attract...In the last decade,shell biorefinery,a novel concept referring to the extraction of the main components of crustacean shells and the transformation of each component into valuable products,was proposed and has attracted increasing attentions.Chitin is one of main components of crustacean shells.Owing to the bio-fixed nitrogen element,chitin biomass has been regarded as a good candidate to produce nitrogen-containing chemicals.Among these,3-acetamido-5-acetylfuran(3A5AF)is an interesting furanic compound derived from the hydrolysis and sequential dehydration of chitin.Similar to cellulose-derived platform chemical 5-hydromethylfurfural(HMF),3A5AF is an emerging platform compound and also can be converted into various useful chemicals by oxidation,reduction,hydrolysis,substitution,and so on.This review showcases the recent advances in the synthesis of 3A5AF from chitin and N-acetyl glucosamine(NAG)employing various catalytic systems.The conversion of 3A5AF into valuable compounds was introduced then.There are still some challenges in this area,for example,the rational design of green and efficient catalytic systems for the synthesis of 3A5AF and its derivatives.The outlooks also were discussed at the end of the review.展开更多
In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the ...In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the arbitrary Lagrangian Eulerian(ALE)algorithm,a numerical model for the interaction between an iceberg and a semi-submersible mooring platform is built in this work.First,a mooring system with a link element is designed and validated.An ice material model for the target iceberg is built and validated.A numerical model for the interaction between an iceberg and a semi-submersible mooring platform is then built.A parametric study(cable angle,tension angle and number of cables)is carried out to study the performance of the mooring system.The collision process between the semi-submersible mooring platform and the iceberg in the polar marine environment can be predicted by the present numerical model,and then the optimal mooring arrangement scheme can be obtained.The research results in this work can provide a reference for the design of mooring systems.展开更多
As a high-value eudicot family,many famous horticultural crop genomes have been deciphered in Oleaceae.However,there are currently no bioinformatics platforms focused on empowering genome research in Oleaceae.Herein,w...As a high-value eudicot family,many famous horticultural crop genomes have been deciphered in Oleaceae.However,there are currently no bioinformatics platforms focused on empowering genome research in Oleaceae.Herein,we developed the first comprehensive Oleaceae Genome Research Platform(OGRP,https://oleaceae.cgrpoee.top/).In OGRP,70 genomes of 10 Oleaceae species and 46 eudicots and 366 transcriptomes involving 18 Oleaceae plant tissues can be obtained.We built 34 window-operated bioinformatics tools,collected 38 professional practical software programs,and proposed 3 new pipelines,namely ancient polyploidization identification,ancestral karyotype reconstruction,and gene family evolution.Employing these pipelines to reanalyze the Oleaceae genomes,we clarified the polyploidization,reconstructed the ancestral karyotypes,and explored the effects of paleogenome evolution on genes with specific biological regulatory roles.Significantly,we generated a series of comparative genomic resources focusing on the Oleaceae,comprising 108 genomic synteny dot plots,1952225 collinear gene pairs,multiple genome alignments,and imprints of paleochromosome rearrangements.Moreover,in Oleaceae genomes,researchers can efficiently search for 1785987 functional annotations,22584 orthogroups,29582 important trait genes from 74 gene families,12664 transcription factor-related genes,9178872 transposable elements,and all involved regulatory pathways.In addition,we provided downloads and usage instructions for the tools,a species encyclopedia,ecological resources,relevant literatures,and external database links.In short,ORGP integrates rich data resources and powerful analytical tools with the characteristic of continuous updating,which can efficiently empower genome research and agricultural breeding in Oleaceae and other plants.展开更多
Taking the cooperation between China and Pakistan as an example,this paper expounds on the current situation,governance concept,obstacles to cooperation,and differentiated policies of Western countries in the areas of...Taking the cooperation between China and Pakistan as an example,this paper expounds on the current situation,governance concept,obstacles to cooperation,and differentiated policies of Western countries in the areas of cybersecurity,the role of new e-commerce platforms,and digital sovereignty of BRICS countries.It aims to promote inter-governmental cooperation through civil dialogue and lead information technology cooperation among developing countries through the BRICS mechanism,as well as to collaborate to establish guidelines for global cybersecurity,new e-commerce platforms,and digital sovereignty.展开更多
In recent years,gig economy jobs-particularly those of food delivery and ride-hailing drivers-have rapidly emerged as a significant force in the labor market,reflecting the deep integration of China’s digital and rea...In recent years,gig economy jobs-particularly those of food delivery and ride-hailing drivers-have rapidly emerged as a significant force in the labor market,reflecting the deep integration of China’s digital and real economies.This paper examines how digital platforms that support the gig economy exercise directionality and dominance in labor matching,where the platform dictates which consumers workers serve,rather than allowing independent choice.While this platform-led matching may appear to limit consumer and worker autonomy,it actually arises from the platform’s central role in information flow and its technological capabilities,serving as a foundation for the platform’s ability to create large-scale employment through cross-side network effects.Using a theoretical model that integrates digital platforms,labor markets,and product markets,the paper explores how the efficiency of targeted matching affects employment creation.In the early stages of gig economy development,when targeted matching efficiency is low,improvements in assignment efficiency lead to a net increase in gig employment,worker income,and overall social welfare.However,in the later stages,as targeted matching efficiency improves,the potential for monopoly abuse by incumbent platforms may trigger a crowding-out effect,leading to unemployment,income inequality between platforms and workers,and higher commission fees.While fostering competition within platform markets offers benefits,policymakers should avoid excessively low entry barriers,as these can negatively impact incumbent platforms’decisions regarding labor,pricing,and technology investment.展开更多
Against the backdrop of the rapid development of digitalization today,the platform economy,as an emerging economic form,is profoundly changing the operation mode and resource allocation methods of the labor market.The...Against the backdrop of the rapid development of digitalization today,the platform economy,as an emerging economic form,is profoundly changing the operation mode and resource allocation methods of the labor market.The efficiency of labor resource allocation is an important indicator to measure the vitality and potential of economic development in a country or region.It is not only related to the welfare level of workers but also directly affects the productivity level and development quality of the entire society.With the help of modern information technology means such as Internet technology,big data algorithms,and mobile communication devices,the platform economy closely connects originally scattered individual workers with employers,building a large and complex networked trading platform.Based on this,this paper focuses on the impact and role of the platform economy on the efficiency of labor resource allocation,aiming to stabilize the efficient operation of the labor market.展开更多
With the growing importance of wearable and portable electronics in modern society and industry,researchers from all over the world have reported on advances in energy harvesting and self-powered sensing technologies....With the growing importance of wearable and portable electronics in modern society and industry,researchers from all over the world have reported on advances in energy harvesting and self-powered sensing technologies.The current review discusses recent developments in triboelectric platforms from a manufacturing perspective,including material,design,application,and industrialization.Manufacturing is an essential component of both industry and technology.The use of a proper manufacturing process enables cutting-edge technology in a lab-scale stage to progress to commercialization and popularization with scalability,availability,commercial advantage,and consistent quality.Furthermore,much literature has emphasized that the most powerful advantage of the triboelectric platform is its wide range of available materials and simple working mechanism,both of which are important characteristics in manufacturing engineering.As a result,different manufacturing processes can be implemented as needed.Because the practical process can have a synergetic effect on the fundamental development,resulting in the growth of both,the development of the triboelectric platform from the standpoint of manufacturing engineering can be further advanced.However,research into the development of a productive manufacturing process is still in its early stages in the field of triboelectric platforms.This review looks at the various manufacturing technologies used in previous studies and discusses the potential benefits of the appropriate process for triboelectric platforms.Given its unique strength,which includes a diverse material selection and a simple working mechanism,the triboelectric platform can use a variety of manufacturing technologies and the process can be optimized as needed.Numerous research groups have clearly demonstrated the triboelectric platform's advantages.As a result,using appropriate manufacturing processes can accelerate the technological advancement of triboelectric platforms in a variety of research and industrial fields by allowing them to move beyond the lab-scale fabrication stage.展开更多
Pullorum disease and fowl typhoid are caused by the Salmonella serovars Gallinarum biovars Pullorum and Gal-linarum,respectively.The prevalence of these diseases varies across regions and is affected by different risk...Pullorum disease and fowl typhoid are caused by the Salmonella serovars Gallinarum biovars Pullorum and Gal-linarum,respectively.The prevalence of these diseases varies across regions and is affected by different risk fac-tors that remain insufficiently documented.To fill this knowledge gap,we have compiled a global dataset for its prevalence,drawing upon a collection of literature from the last seven decades obtained from bilingual databases.However,a more interactive and dynamic platform is still needed for both academics and policymakers to improve biosecurity measures,limit disease transmission,and prevent future outbreaks at the global and local levels.Here,we developed an advanced visualization platform to depict the prevalence of Salmonella Pullorum and Gallinarum,espe-cially in China,which is categorized by geographical region and temporal span.The platform offers a user-friendly,efficient,and visually engaging tool to explore the prevalence of pullorum disease and fowl typhoid between 1945 and 2021 in different regions.Additionally,this platform allows users to understand the influence of various fac-tors,such as breed,farm mode,economic usage and even the sex of the primary host,chickens,on the prevalence of this disease.We further provided a detailed overview of individual province within China.In particular,by selecting two different provinces on the interface,users can quickly visualize and grasp the disparities in disease prevalence between the chosen regions.This interactive toolkit enables a dynamic exploration of the patterns and factors con-tributing to the prevalence of Salmonella Pullorum and Gallinarum.This interactive platform is freely available open source at http://139.9.85.208/.展开更多
The Cambrian platform margin in the Tarim Basin boasts favorable source-reservoir-cap assemblages,making it a significant target for hydrocarbon exploration in ultra-to extra-deep facies-controlled for-mations.Of the ...The Cambrian platform margin in the Tarim Basin boasts favorable source-reservoir-cap assemblages,making it a significant target for hydrocarbon exploration in ultra-to extra-deep facies-controlled for-mations.Of the three major basins in western China,Tarim is the only basin with large-scale platform margin where no exploration breakthrough has been achieved yet.This study determines the vertical and lateral differential evolution of the platform margin(in the Manxi area hereafter referred to as the Cambrian Manxi platform margin)through fine-scale sequence stratigraphic division and a segmented analysis.The platform margin can be divided into the Yuqi,Tahe,Shunbei,and Gucheng segments,from north to south,based on the development of different ancient landforms and the evolutionary process of the platform.The Yuqi and Shunbei segments exhibit relatively low-elevation ancient landforms.Both segments were in a submarine buildup stage during the Early Cambrian,resulting in overall limited scales of their reservoirs.The Gucheng segment features the highest-elevation ancient landforms and accordingly limited accommodation spaces.As a result,the rapid lateral migration of high-energy facies zones leads to the development of large-scale reservoirs with only limited thicknesses.In contrast,the Tahe segment,exhibiting comparatively high-elevation ancient landforms,is identified as the most favorable segment for the formation of large-scale reservoirs.The cap rocks of the platform margin are dominated by back-reef dolomitic flats and tight carbonate rocks formed in transgressive periods.A comprehensive evaluation of source rocks,reservoirs,and cap rocks indicates that the Tahe segment boasts the optimal hydrocarbon accumulation conditions along the platform margin.In this segment,the Shayilike Formation transgressive deposits and the high-energy mound-shoal complexes along the platform margin of the Wusonggeer Formation constitute the optimal reservoir-cap rock assemblage,establishing this segment as the most promising target for hydrocarbon exploration in the platform margin.展开更多
Platform-style construction is a widely recognized and well-established approach among engineers and developers for multi-story mass timber buildings.This construction method offers many advantages,such as rapid assem...Platform-style construction is a widely recognized and well-established approach among engineers and developers for multi-story mass timber buildings.This construction method offers many advantages,such as rapid assembly,an excellent strength-to-weight ratio,and appealing aesthetic features.In a platform-type construction,each story is constructed by placing the floor panels on top of the load-bearing wall,creating a platform for the level above.Although this method offers numerous advantages,recent research findings have revealed that cross-laminated(CLT)platform buildings with conventional connections,such as wall-to-floor hold-down brackets and shear connectors with nails and screws,are prone to experience a high degree of damage under design-level earthquakes.Consequently,conventional connections in platform-type construction are vulnerable to more damage under aftershocks and do not meet the damage avoidance requirements of seismic design.This paper introduces an innovative floor-to-wall connection for a platform-type low-rise mass timber building that mitigates the limitations of conventional connections.The effectiveness of the proposed connection has been investigated,and the seismic performance of the system,which incorporates the proposed connection,has been outlined in this paper.A numerical model with an innovative inter-story isolation system is developed in ETABS,and the seismic performance of the isolated structure was evaluated using Response Spectrum Analysis(RSA)and Nonlinear Time History Analysis(NLTHA).This study revealed that inter-story isolation systems significantly reduced the seismic demands on the mass timber components,demonstrating the system’s ability to dissipate seismic energy.Additionally,the system displayed effective energy dissipation while exhibiting self-centering behaviour.展开更多
文摘With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
基金supported by the Chinese National Natural Science Foundation Projects[grant number 41901265]Major Program of the National Natural Science Foundation of China[grant number 92038301]supported in part by the Special Fund of Hubei Luojia Laboratory[grant number 220100028].
文摘The rapid processing,analysis,and mining of remote-sensing big data based on intelligent interpretation technology using remote-sensing cloud computing platforms(RS-CCPs)have recently become a new trend.The existing RS-CCPs mainly focus on developing and optimizing high-performance data storage and intelligent computing for common visual representation,which ignores remote sensing data characteristics such as large image size,large-scale change,multiple data channels,and geographic knowledge embedding,thus impairing computational efficiency and accuracy.We construct a LuoJiaAI platform composed of a standard large-scale sample database(LuoJiaSET)and a dedicated deep learning framework(LuoJiaNET)to achieve state-of-the-art performance on five typical remote sensing interpretation tasks,including scene classification,object detection,land-use classification,change detection,and multi-view 3D reconstruction.The details of the LuoJiaAI application experiment can be found at the white paper for LuoJiaAI industrial application.In addition,LuoJiaAI is an open-source RS-CCP that supports the latest Open Geospatial Consortium(OGC)standards for better developing and sharing Earth Artificial Intelligence(AI)algorithms and products on benchmark datasets.LuoJiaAI narrows the gap between the sample database and deep learning frameworks through a user-friendly data-framework collaboration mechanism,showing great potential in high-precision remote sensing mapping applications.
基金2024 Anqing Normal University University-Level Key Project(ZK2024062D)。
文摘This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.
文摘Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.
文摘Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest.
文摘Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC2802501)the National Natural Science Foundation of China(Grant Nos.42175154 and 42305084)+1 种基金the Hunan Provincial Natural Science Foundation of China(Grant No.2024JJ2058)Research Project of the National University of Defense Technology(Grant No.202401-YJRC-XX-030)。
文摘Antarctic clouds and their vertical structures play a significant role in influencing the regional radiation budget and ice mass balance;however,substantial uncertainties persist.Continuous monitoring and research are essential for enhancing our understanding of these clouds.This study presents an analysis of cloud occurrence frequency and cloud-base heights(CBHs)at Zhongshan Station in East Antarctica for the first time,utilizing data from a C12 ceilometer covering the period from January 2022 to December 2023.The findings indicate that low clouds dominate at Zhongshan Station,with an average cloud occurrence frequency of 75%.Both the cloud occurrence frequency and CBH distribution exhibit distinct seasonal variations.Specifically,the cloud occurrence frequency during winter is higher than that observed in summer,while winter clouds can develop to greater heights.Over the Southern Ocean,the cloud occurrence frequency during summer surpasses that at Zhongshan Station,with clouds featuring lower CBHs and larger extinction coefficients.Furthermore,it is noteworthy that CBHs derived from the ceilometer are basically consistent with those obtained from radiosondes.Importantly,ERA5 demonstrates commendable performance in retrieving CBHs at Zhongshan Station when compared with ceilometer measurements.
文摘On 20 April 1994,China made its first o!cial full-function connection to the World Wide Web through a 64-kilobyte international leased line,marking the country’s formal entry into the global digital age.The year 2024 marked the 30th anniversary of the country’s entry into the internet era.
基金support of the National Natural Science Foundation of China(22408032)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202000826 and KJQN202300836)+2 种基金Research Start-up Funding project of Chongqing Technology and Business University(1856011)Science and Technology Project of Chongqing Technology and Business University(2152027)Graduate Innovative Research Project from Chongqing Technology and Business University(yjscxx2024-284-29).
文摘In the last decade,shell biorefinery,a novel concept referring to the extraction of the main components of crustacean shells and the transformation of each component into valuable products,was proposed and has attracted increasing attentions.Chitin is one of main components of crustacean shells.Owing to the bio-fixed nitrogen element,chitin biomass has been regarded as a good candidate to produce nitrogen-containing chemicals.Among these,3-acetamido-5-acetylfuran(3A5AF)is an interesting furanic compound derived from the hydrolysis and sequential dehydration of chitin.Similar to cellulose-derived platform chemical 5-hydromethylfurfural(HMF),3A5AF is an emerging platform compound and also can be converted into various useful chemicals by oxidation,reduction,hydrolysis,substitution,and so on.This review showcases the recent advances in the synthesis of 3A5AF from chitin and N-acetyl glucosamine(NAG)employing various catalytic systems.The conversion of 3A5AF into valuable compounds was introduced then.There are still some challenges in this area,for example,the rational design of green and efficient catalytic systems for the synthesis of 3A5AF and its derivatives.The outlooks also were discussed at the end of the review.
基金financially supported by the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center,Ludong University(Grant Nos.MAETIC202209 and MAETIC202201)Shandong Provincial Natural Science Foundation(Grant No.ZR2022QE092)+2 种基金China Postdoctoral Science Foundation(Grant No.2023M730829)Open Fund of the State Key Laboratory of Industrial Equipment Structural Analysis(Grant No.GZ23109)the National Natural Science Foundation of China(Grant Nos.52001284 and 52192694).
文摘In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the arbitrary Lagrangian Eulerian(ALE)algorithm,a numerical model for the interaction between an iceberg and a semi-submersible mooring platform is built in this work.First,a mooring system with a link element is designed and validated.An ice material model for the target iceberg is built and validated.A numerical model for the interaction between an iceberg and a semi-submersible mooring platform is then built.A parametric study(cable angle,tension angle and number of cables)is carried out to study the performance of the mooring system.The collision process between the semi-submersible mooring platform and the iceberg in the polar marine environment can be predicted by the present numerical model,and then the optimal mooring arrangement scheme can be obtained.The research results in this work can provide a reference for the design of mooring systems.
基金supported by the National Natural Science Foundation of China(32470676 and 32170236)Central Guidance on Local Science and Technology Development Fund of Hebei Province(246Z2508G)+2 种基金Hebei Natural Science Foundation(C2020209064)Tangshan Science and Technology Program Project(21130217C)Key research project of North China University of Science and Technology(ZD-YG-202313-23).
文摘As a high-value eudicot family,many famous horticultural crop genomes have been deciphered in Oleaceae.However,there are currently no bioinformatics platforms focused on empowering genome research in Oleaceae.Herein,we developed the first comprehensive Oleaceae Genome Research Platform(OGRP,https://oleaceae.cgrpoee.top/).In OGRP,70 genomes of 10 Oleaceae species and 46 eudicots and 366 transcriptomes involving 18 Oleaceae plant tissues can be obtained.We built 34 window-operated bioinformatics tools,collected 38 professional practical software programs,and proposed 3 new pipelines,namely ancient polyploidization identification,ancestral karyotype reconstruction,and gene family evolution.Employing these pipelines to reanalyze the Oleaceae genomes,we clarified the polyploidization,reconstructed the ancestral karyotypes,and explored the effects of paleogenome evolution on genes with specific biological regulatory roles.Significantly,we generated a series of comparative genomic resources focusing on the Oleaceae,comprising 108 genomic synteny dot plots,1952225 collinear gene pairs,multiple genome alignments,and imprints of paleochromosome rearrangements.Moreover,in Oleaceae genomes,researchers can efficiently search for 1785987 functional annotations,22584 orthogroups,29582 important trait genes from 74 gene families,12664 transcription factor-related genes,9178872 transposable elements,and all involved regulatory pathways.In addition,we provided downloads and usage instructions for the tools,a species encyclopedia,ecological resources,relevant literatures,and external database links.In short,ORGP integrates rich data resources and powerful analytical tools with the characteristic of continuous updating,which can efficiently empower genome research and agricultural breeding in Oleaceae and other plants.
文摘Taking the cooperation between China and Pakistan as an example,this paper expounds on the current situation,governance concept,obstacles to cooperation,and differentiated policies of Western countries in the areas of cybersecurity,the role of new e-commerce platforms,and digital sovereignty of BRICS countries.It aims to promote inter-governmental cooperation through civil dialogue and lead information technology cooperation among developing countries through the BRICS mechanism,as well as to collaborate to establish guidelines for global cybersecurity,new e-commerce platforms,and digital sovereignty.
基金supported by the National Social Science Fund of China(NSSFC)General Project“Research on the Mechanism of Monopoly Formation and Anti-Monopoly Regulation from the Perspective of Digital Economy”(Grant No.22BJY116)the Guangdong Provincial Natural Science Fund for Distinguished Young Scholars“Research on Carbon Trading Mechanisms under the Generalized Carbon Leakage Risk”(Grant No.2023B1515020068)the National Natural Science Foundation of China(NSFC)Key Project“Research on the Theory,Mechanism and Model of State-Owned Capital Mergers and Acquisitions”(Grant No.72132010).
文摘In recent years,gig economy jobs-particularly those of food delivery and ride-hailing drivers-have rapidly emerged as a significant force in the labor market,reflecting the deep integration of China’s digital and real economies.This paper examines how digital platforms that support the gig economy exercise directionality and dominance in labor matching,where the platform dictates which consumers workers serve,rather than allowing independent choice.While this platform-led matching may appear to limit consumer and worker autonomy,it actually arises from the platform’s central role in information flow and its technological capabilities,serving as a foundation for the platform’s ability to create large-scale employment through cross-side network effects.Using a theoretical model that integrates digital platforms,labor markets,and product markets,the paper explores how the efficiency of targeted matching affects employment creation.In the early stages of gig economy development,when targeted matching efficiency is low,improvements in assignment efficiency lead to a net increase in gig employment,worker income,and overall social welfare.However,in the later stages,as targeted matching efficiency improves,the potential for monopoly abuse by incumbent platforms may trigger a crowding-out effect,leading to unemployment,income inequality between platforms and workers,and higher commission fees.While fostering competition within platform markets offers benefits,policymakers should avoid excessively low entry barriers,as these can negatively impact incumbent platforms’decisions regarding labor,pricing,and technology investment.
文摘Against the backdrop of the rapid development of digitalization today,the platform economy,as an emerging economic form,is profoundly changing the operation mode and resource allocation methods of the labor market.The efficiency of labor resource allocation is an important indicator to measure the vitality and potential of economic development in a country or region.It is not only related to the welfare level of workers but also directly affects the productivity level and development quality of the entire society.With the help of modern information technology means such as Internet technology,big data algorithms,and mobile communication devices,the platform economy closely connects originally scattered individual workers with employers,building a large and complex networked trading platform.Based on this,this paper focuses on the impact and role of the platform economy on the efficiency of labor resource allocation,aiming to stabilize the efficient operation of the labor market.
基金supported by the National Research Foundation of Korea(NRF)(No.2021R1C1C2009703)supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(RS-2024-00344920)supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant funded by the Ministry of Trade,Industry and Energy of Korea(No.RS2023-00244330)。
文摘With the growing importance of wearable and portable electronics in modern society and industry,researchers from all over the world have reported on advances in energy harvesting and self-powered sensing technologies.The current review discusses recent developments in triboelectric platforms from a manufacturing perspective,including material,design,application,and industrialization.Manufacturing is an essential component of both industry and technology.The use of a proper manufacturing process enables cutting-edge technology in a lab-scale stage to progress to commercialization and popularization with scalability,availability,commercial advantage,and consistent quality.Furthermore,much literature has emphasized that the most powerful advantage of the triboelectric platform is its wide range of available materials and simple working mechanism,both of which are important characteristics in manufacturing engineering.As a result,different manufacturing processes can be implemented as needed.Because the practical process can have a synergetic effect on the fundamental development,resulting in the growth of both,the development of the triboelectric platform from the standpoint of manufacturing engineering can be further advanced.However,research into the development of a productive manufacturing process is still in its early stages in the field of triboelectric platforms.This review looks at the various manufacturing technologies used in previous studies and discusses the potential benefits of the appropriate process for triboelectric platforms.Given its unique strength,which includes a diverse material selection and a simple working mechanism,the triboelectric platform can use a variety of manufacturing technologies and the process can be optimized as needed.Numerous research groups have clearly demonstrated the triboelectric platform's advantages.As a result,using appropriate manufacturing processes can accelerate the technological advancement of triboelectric platforms in a variety of research and industrial fields by allowing them to move beyond the lab-scale fabrication stage.
基金supported by the National Program on the Key Research Project of China(2022YFC2604201)the Zhejiang Provincial Natural Science Founda-tion of China(LZ24C180002+2 种基金LR19C180001)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0083)the Open Project Program of the Jiangsu Key Laboratory of Zoonosis(R1902).
文摘Pullorum disease and fowl typhoid are caused by the Salmonella serovars Gallinarum biovars Pullorum and Gal-linarum,respectively.The prevalence of these diseases varies across regions and is affected by different risk fac-tors that remain insufficiently documented.To fill this knowledge gap,we have compiled a global dataset for its prevalence,drawing upon a collection of literature from the last seven decades obtained from bilingual databases.However,a more interactive and dynamic platform is still needed for both academics and policymakers to improve biosecurity measures,limit disease transmission,and prevent future outbreaks at the global and local levels.Here,we developed an advanced visualization platform to depict the prevalence of Salmonella Pullorum and Gallinarum,espe-cially in China,which is categorized by geographical region and temporal span.The platform offers a user-friendly,efficient,and visually engaging tool to explore the prevalence of pullorum disease and fowl typhoid between 1945 and 2021 in different regions.Additionally,this platform allows users to understand the influence of various fac-tors,such as breed,farm mode,economic usage and even the sex of the primary host,chickens,on the prevalence of this disease.We further provided a detailed overview of individual province within China.In particular,by selecting two different provinces on the interface,users can quickly visualize and grasp the disparities in disease prevalence between the chosen regions.This interactive toolkit enables a dynamic exploration of the patterns and factors con-tributing to the prevalence of Salmonella Pullorum and Gallinarum.This interactive platform is freely available open source at http://139.9.85.208/.
基金funded by SINOPEC Science and Technology Research Program (project Nos:P24226, P24077)Northwest Oil Field Company,SINOPEC.
文摘The Cambrian platform margin in the Tarim Basin boasts favorable source-reservoir-cap assemblages,making it a significant target for hydrocarbon exploration in ultra-to extra-deep facies-controlled for-mations.Of the three major basins in western China,Tarim is the only basin with large-scale platform margin where no exploration breakthrough has been achieved yet.This study determines the vertical and lateral differential evolution of the platform margin(in the Manxi area hereafter referred to as the Cambrian Manxi platform margin)through fine-scale sequence stratigraphic division and a segmented analysis.The platform margin can be divided into the Yuqi,Tahe,Shunbei,and Gucheng segments,from north to south,based on the development of different ancient landforms and the evolutionary process of the platform.The Yuqi and Shunbei segments exhibit relatively low-elevation ancient landforms.Both segments were in a submarine buildup stage during the Early Cambrian,resulting in overall limited scales of their reservoirs.The Gucheng segment features the highest-elevation ancient landforms and accordingly limited accommodation spaces.As a result,the rapid lateral migration of high-energy facies zones leads to the development of large-scale reservoirs with only limited thicknesses.In contrast,the Tahe segment,exhibiting comparatively high-elevation ancient landforms,is identified as the most favorable segment for the formation of large-scale reservoirs.The cap rocks of the platform margin are dominated by back-reef dolomitic flats and tight carbonate rocks formed in transgressive periods.A comprehensive evaluation of source rocks,reservoirs,and cap rocks indicates that the Tahe segment boasts the optimal hydrocarbon accumulation conditions along the platform margin.In this segment,the Shayilike Formation transgressive deposits and the high-energy mound-shoal complexes along the platform margin of the Wusonggeer Formation constitute the optimal reservoir-cap rock assemblage,establishing this segment as the most promising target for hydrocarbon exploration in the platform margin.
基金gratitude to WIDE Trust New Zealand for providing the opportunity and funding for this research,as well as QuakeCoRE,a New Zealand Tertiary Education Commission-funded Centre,for partially funding this research.This is QuakeCoRE,publication number 1013.
文摘Platform-style construction is a widely recognized and well-established approach among engineers and developers for multi-story mass timber buildings.This construction method offers many advantages,such as rapid assembly,an excellent strength-to-weight ratio,and appealing aesthetic features.In a platform-type construction,each story is constructed by placing the floor panels on top of the load-bearing wall,creating a platform for the level above.Although this method offers numerous advantages,recent research findings have revealed that cross-laminated(CLT)platform buildings with conventional connections,such as wall-to-floor hold-down brackets and shear connectors with nails and screws,are prone to experience a high degree of damage under design-level earthquakes.Consequently,conventional connections in platform-type construction are vulnerable to more damage under aftershocks and do not meet the damage avoidance requirements of seismic design.This paper introduces an innovative floor-to-wall connection for a platform-type low-rise mass timber building that mitigates the limitations of conventional connections.The effectiveness of the proposed connection has been investigated,and the seismic performance of the system,which incorporates the proposed connection,has been outlined in this paper.A numerical model with an innovative inter-story isolation system is developed in ETABS,and the seismic performance of the isolated structure was evaluated using Response Spectrum Analysis(RSA)and Nonlinear Time History Analysis(NLTHA).This study revealed that inter-story isolation systems significantly reduced the seismic demands on the mass timber components,demonstrating the system’s ability to dissipate seismic energy.Additionally,the system displayed effective energy dissipation while exhibiting self-centering behaviour.