Previous analyses on the estimates of water vapor and cloud-related feedbacks in the tropics usually use observations over the Earth Radiation Budget Experiment (ERBE) period (1985-89). To examine the sample depen...Previous analyses on the estimates of water vapor and cloud-related feedbacks in the tropics usually use observations over the Earth Radiation Budget Experiment (ERBE) period (1985-89). To examine the sample dependence of previous estimates, the authors extend the analysis to two additional periods: 1990-94 and 1995-99. The results confirm our hypothesis, i.e., the values of the feedbacks depend on the period of data coverage. The differences in the feedbacks from cloud radiative forcings (CRFs) estimated from the three periods are particularly significant. Two possible causes for these differences are proposed. First, a regime behavior in the CRFs-Sea Surface Temperature Anomaly (SSTA) rela- tionship over the cold tongue region is revealed: when SSTA is below -0.5℃, the CRF anomalies are insensitive to the SSTA; when the SSTA is between -0.5℃ and 2.0℃, the CRF anomalies are positively correlated with the SSTA; however, when the SSTA exceeds 2.0℃, the CRF anomalies decrease with the SSTA. This regime behavior is due to the regime behavior of cirrostratus and deep convective clouds. Second, the CRFs-SSTA relationship is regulated by remote forcings. Warming of the far eastern equatorial Pacific would reduce the water vapor convergence over the central Pacific by weakening the trade wind over the southeastern Pacific, thereby reducing the feeding of moisture to the convective flow. The results suggest that CRFs-SSTA relationships during ENSO events are nonlinear and strongly depend on the magnitude and the spatial distribution of the SSTA.展开更多
The cloud feedback on the SST variability in the western equatorial Pacific in GOALS/LASG model is studied in this paper. Two versions of the model, one with the diagnostic cloud and another with the prescribed cloud,...The cloud feedback on the SST variability in the western equatorial Pacific in GOALS/LASG model is studied in this paper. Two versions of the model, one with the diagnostic cloud and another with the prescribed cloud, are used. Both versions are integrated for 45 years. It is found that in the prescribed cloud run, the SST variability in the western equatorial Pacific is mainly of interdecadal time scale and the interannual variability is very weak. In the diagnostic cloud run, however, the interdecadal SST variability is depressed much and the interannual SST variability becomes much significant.The mechanism for the feedback is then explored. The variability of sea surface temperature (SST) in the western equatorial Pacific is found to be controlled mainly by the zonal wind anomaly, through the process of upwelling/downwelling in both versions. Then it is found that in the diagnostic cloud case, the negative feedback of the solar short wave (SW) flux acts significantly to balance the effect of upwelling/downwelling in addition to the latent flux. In addition, the variability of the SW flux is shown to be closely related to the variability of the middle and high cloud covers. Therefore, the negative feedback of the SW surface flux may have significant contribution to the cloud feedback on the SST variability.展开更多
The sensitivity of precipitation to sea surface temperature(SST) and its diurnal variation is investigated through a rainfall partitioning analysis of two-dimensional cloud-resolving model experiments based on surface...The sensitivity of precipitation to sea surface temperature(SST) and its diurnal variation is investigated through a rainfall partitioning analysis of two-dimensional cloud-resolving model experiments based on surface rainfall budget.For all experiments,the model is set up using zero vertical velocity and a constant zonal wind and is integrated over 40 days to reach quasi-equilibrium states.The 10-day equilibrium grid-scale simulation data and a time-invariant SST of 29°C are used in the control experiment.In the sensitivity experiments,time-invariant SSTs are 27°C and 31°C with an average value of 29°C when the minimum and maximum values of diurnal SST differences are 1°C and 2°C,respectively.The results show that the largest contribution to total rainfall is from the rainfall with water vapor convergence and local atmospheric drying and hydrometeor gain/divergence(~30%) in all experiments.When SST increases from 27°C to 29°C,the contribution from water vapor convergence decreases.The increase of SST reduces the contribution of the rainfall with water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric drying and hydrometeor gain/divergence and the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The inclusion of diurnal variation of SST with the diurnal difference of 1°C decreases the rainfall contribution from water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The contribution of the rainfall from water vapor convergence is barely changed as the diurnal difference of SST increases from 1°C to 2°C.展开更多
Among the regression-based algorithms for deriving SST from satellite measurements, regionally optimized algorithms normally perform better than the corresponding global algorithm. In this paper, three algorithms are ...Among the regression-based algorithms for deriving SST from satellite measurements, regionally optimized algorithms normally perform better than the corresponding global algorithm. In this paper, three algorithms are considered for SST retrieval over the East Asia region (15°-55°N, 105°-170°E), including the multi-channel algorithm (MCSST), the quadratic algorithm (QSST), and the Pathfinder algorithm (PFSST). All algorithms are derived and validated using collocated buoy and Geostationary Meteorological Satellite (GMS-5) observations from 1997 to 2001. An important part of the derivation and validation of the algorithms is the quality control procedure for the buoy SST data and an improved cloud screening method for the satellite brightness temperature measurements. The regionally optimized MCSST algorithm shows an overall improvement over the global algorithm, removing the bias of about -0.13℃ and reducing the root-mean-square difference (rmsd) from 1.36℃ to 1.26℃. The QSST is only slightly better than the MCSST. For both algorithms, a seasonal dependence of the remaining error statistics is still evident. The Pathfinder approach for deriving a season-specific set of coefficients, one for August to October and one for the rest of the year, provides the smallest rmsd overall that is also stable over time.展开更多
The effect of solar wind(SW) on the North Atlantic sea surface temperature(SST) in boreal winter is examined through an analysis of observational data during 1964-2013.The North Atlantic SSTs show a pronounced mer...The effect of solar wind(SW) on the North Atlantic sea surface temperature(SST) in boreal winter is examined through an analysis of observational data during 1964-2013.The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed(SWS) variations.This pattern is broadly similar to the leading empirical orthogonal function(EOF) mode of interannual variations in the wintertime SSTs over North Atlantic.The time series of this leading EOF mode of SST shows a significant interannual period,which is the same as that of wintertime SWS.This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind,which simultaneously resembles the North Atlantic Oscillation(NAO) in the overlying atmosphere.As compared with the typical low SWS winters,during the typical high SWS winters,the stratospheric polar night jet(PNJ) is evidently enhanced and extends from the stratosphere to the troposphere,even down to the North Atlantic Ocean surface.Notably,the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere.Thus,it seems that the SW is a possible factor for this North Atlantic SST tripolar mode.The dynamical process of stratosphere-troposphere coupling,together with the global atmospheric electric circuit-cloud microphysical process,probably accounts for the particular downward propagation of the SW signal.展开更多
基金supported by the National Key Technologies R&D Program of China (2007BAC29B03)the National Natural Science Foundation of China (40890054 and 40821092)
文摘Previous analyses on the estimates of water vapor and cloud-related feedbacks in the tropics usually use observations over the Earth Radiation Budget Experiment (ERBE) period (1985-89). To examine the sample dependence of previous estimates, the authors extend the analysis to two additional periods: 1990-94 and 1995-99. The results confirm our hypothesis, i.e., the values of the feedbacks depend on the period of data coverage. The differences in the feedbacks from cloud radiative forcings (CRFs) estimated from the three periods are particularly significant. Two possible causes for these differences are proposed. First, a regime behavior in the CRFs-Sea Surface Temperature Anomaly (SSTA) rela- tionship over the cold tongue region is revealed: when SSTA is below -0.5℃, the CRF anomalies are insensitive to the SSTA; when the SSTA is between -0.5℃ and 2.0℃, the CRF anomalies are positively correlated with the SSTA; however, when the SSTA exceeds 2.0℃, the CRF anomalies decrease with the SSTA. This regime behavior is due to the regime behavior of cirrostratus and deep convective clouds. Second, the CRFs-SSTA relationship is regulated by remote forcings. Warming of the far eastern equatorial Pacific would reduce the water vapor convergence over the central Pacific by weakening the trade wind over the southeastern Pacific, thereby reducing the feeding of moisture to the convective flow. The results suggest that CRFs-SSTA relationships during ENSO events are nonlinear and strongly depend on the magnitude and the spatial distribution of the SSTA.
文摘The cloud feedback on the SST variability in the western equatorial Pacific in GOALS/LASG model is studied in this paper. Two versions of the model, one with the diagnostic cloud and another with the prescribed cloud, are used. Both versions are integrated for 45 years. It is found that in the prescribed cloud run, the SST variability in the western equatorial Pacific is mainly of interdecadal time scale and the interannual variability is very weak. In the diagnostic cloud run, however, the interdecadal SST variability is depressed much and the interannual SST variability becomes much significant.The mechanism for the feedback is then explored. The variability of sea surface temperature (SST) in the western equatorial Pacific is found to be controlled mainly by the zonal wind anomaly, through the process of upwelling/downwelling in both versions. Then it is found that in the diagnostic cloud case, the negative feedback of the solar short wave (SW) flux acts significantly to balance the effect of upwelling/downwelling in addition to the latent flux. In addition, the variability of the SW flux is shown to be closely related to the variability of the middle and high cloud covers. Therefore, the negative feedback of the SW surface flux may have significant contribution to the cloud feedback on the SST variability.
基金State Key Development Program for Basic Research of China (2009CB421505)Projects of the Natural Science Foundation of China (4107504441075079)
文摘The sensitivity of precipitation to sea surface temperature(SST) and its diurnal variation is investigated through a rainfall partitioning analysis of two-dimensional cloud-resolving model experiments based on surface rainfall budget.For all experiments,the model is set up using zero vertical velocity and a constant zonal wind and is integrated over 40 days to reach quasi-equilibrium states.The 10-day equilibrium grid-scale simulation data and a time-invariant SST of 29°C are used in the control experiment.In the sensitivity experiments,time-invariant SSTs are 27°C and 31°C with an average value of 29°C when the minimum and maximum values of diurnal SST differences are 1°C and 2°C,respectively.The results show that the largest contribution to total rainfall is from the rainfall with water vapor convergence and local atmospheric drying and hydrometeor gain/divergence(~30%) in all experiments.When SST increases from 27°C to 29°C,the contribution from water vapor convergence decreases.The increase of SST reduces the contribution of the rainfall with water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric drying and hydrometeor gain/divergence and the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The inclusion of diurnal variation of SST with the diurnal difference of 1°C decreases the rainfall contribution from water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The contribution of the rainfall from water vapor convergence is barely changed as the diurnal difference of SST increases from 1°C to 2°C.
文摘Among the regression-based algorithms for deriving SST from satellite measurements, regionally optimized algorithms normally perform better than the corresponding global algorithm. In this paper, three algorithms are considered for SST retrieval over the East Asia region (15°-55°N, 105°-170°E), including the multi-channel algorithm (MCSST), the quadratic algorithm (QSST), and the Pathfinder algorithm (PFSST). All algorithms are derived and validated using collocated buoy and Geostationary Meteorological Satellite (GMS-5) observations from 1997 to 2001. An important part of the derivation and validation of the algorithms is the quality control procedure for the buoy SST data and an improved cloud screening method for the satellite brightness temperature measurements. The regionally optimized MCSST algorithm shows an overall improvement over the global algorithm, removing the bias of about -0.13℃ and reducing the root-mean-square difference (rmsd) from 1.36℃ to 1.26℃. The QSST is only slightly better than the MCSST. For both algorithms, a seasonal dependence of the remaining error statistics is still evident. The Pathfinder approach for deriving a season-specific set of coefficients, one for August to October and one for the rest of the year, provides the smallest rmsd overall that is also stable over time.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB957804)National Natural Science Foundation of China(41490642 and 41375069)
文摘The effect of solar wind(SW) on the North Atlantic sea surface temperature(SST) in boreal winter is examined through an analysis of observational data during 1964-2013.The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed(SWS) variations.This pattern is broadly similar to the leading empirical orthogonal function(EOF) mode of interannual variations in the wintertime SSTs over North Atlantic.The time series of this leading EOF mode of SST shows a significant interannual period,which is the same as that of wintertime SWS.This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind,which simultaneously resembles the North Atlantic Oscillation(NAO) in the overlying atmosphere.As compared with the typical low SWS winters,during the typical high SWS winters,the stratospheric polar night jet(PNJ) is evidently enhanced and extends from the stratosphere to the troposphere,even down to the North Atlantic Ocean surface.Notably,the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere.Thus,it seems that the SW is a possible factor for this North Atlantic SST tripolar mode.The dynamical process of stratosphere-troposphere coupling,together with the global atmospheric electric circuit-cloud microphysical process,probably accounts for the particular downward propagation of the SW signal.