The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networ...The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.展开更多
Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/f...Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather.展开更多
Following the progression in Internet of Things(IoT) and 5G communication networks, the traditional cloud computing model have shifted to fog computing. Fog computing provides mobile computing, network control and sto...Following the progression in Internet of Things(IoT) and 5G communication networks, the traditional cloud computing model have shifted to fog computing. Fog computing provides mobile computing, network control and storage to the network edges to assist latency critical and computation-intensive applications. Moreover, security features are improved in fog paradigm by processing critical data on edge devices instead of data centres outside the control plane of users. However, fog network deployment imposes many challenges including resource allocation, privacy of users, non-availability of programming model and testing software and support for the heterogenous networks. This article highlights these challenges and their potential solutions in detail. This article also discusses threetier fog network architecture, its standardization and benefits in detail. The proposed resource allocation mechanism for three tier fog networks based on swap matching is described. Results show that by practicing the proposed resource allocation mechanism, maximum throughput with reduced latency is achieved.展开更多
With the dawning of the Internet of Everything(IoE) era, more and more novel applications are being deployed. However, resource constrained devices cannot fulfill the resource-requirements of these applications. This ...With the dawning of the Internet of Everything(IoE) era, more and more novel applications are being deployed. However, resource constrained devices cannot fulfill the resource-requirements of these applications. This paper investigates the computation offloading problem of the coexistence and synergy between fog computing and cloud computing in IoE by jointly optimizing the offloading decisions, the allocation of computation resource and transmit power. Specifically, we propose an energy-efficient computation offloading and resource allocation(ECORA) scheme to minimize the system cost. The simulation results verify the proposed scheme can effectively decrease the system cost by up to 50% compared with the existing schemes, especially for the scenario that the computation resource of fog computing is relatively small or the number of devices increases.展开更多
Based on the model of regular condensation it was found that at low concentrations of CN (LC mode) at a height of about 10 m from the condensation level narrow spectra of cloud drop are formed. Their dispersion quickl...Based on the model of regular condensation it was found that at low concentrations of CN (LC mode) at a height of about 10 m from the condensation level narrow spectra of cloud drop are formed. Their dispersion quickly decreases with increasing height. For high concentrations (HC mode) broad spectra are formed immediately due to the absence of separation into growing drops and CN covered with water. The process of spectra evolution is conducted at a constant height results, in all the cases, in the appearance of asymptotic spectra with a relative width rb ≥ 0.215. To approximate these calculated asymptotic spectra, the modified gamma-distribution with the fixed parameter α = 3 and a variable parameter γ are most suitable. For the intermediate spectra applicable are the simpler mirror-transformed known distributions. The comparison of the above distributions with the experimental spectra of a fog artificially formed in the Big Aerosol Chamber (BAC) of RPA “Typhoon” and the spectra of the morning fog and super cooled stratiform clouds demonstrated their good agreement. The phenomenon of multimodal spectra formation at a sharp rise of stratiform clouds with the velocity more than 0.1 - 0.3 m/s was theoretically shown and experimentally confirmed. The effect of CN high concentrations, evolution processes and sharp fluctuations of vertical velocities on the formation of cloud spectra observed in nature is discussed.展开更多
基金supported in part by National Natural Science Foundation of China (No.61401331,No.61401328)111 Project in Xidian University of China(B08038)+2 种基金Hong Kong,Macao and Taiwan Science and Technology Cooperation Special Project (2014DFT10320,2015DFT10160)The National Science and Technology Major Project of the Ministry of Science and Technology of China(2015zx03002006-003)FundamentalResearch Funds for the Central Universities (20101155739)
文摘The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RG23129).
文摘Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather.
文摘Following the progression in Internet of Things(IoT) and 5G communication networks, the traditional cloud computing model have shifted to fog computing. Fog computing provides mobile computing, network control and storage to the network edges to assist latency critical and computation-intensive applications. Moreover, security features are improved in fog paradigm by processing critical data on edge devices instead of data centres outside the control plane of users. However, fog network deployment imposes many challenges including resource allocation, privacy of users, non-availability of programming model and testing software and support for the heterogenous networks. This article highlights these challenges and their potential solutions in detail. This article also discusses threetier fog network architecture, its standardization and benefits in detail. The proposed resource allocation mechanism for three tier fog networks based on swap matching is described. Results show that by practicing the proposed resource allocation mechanism, maximum throughput with reduced latency is achieved.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2018YJS008)the National Natural Science Foundation of China (61471031, 61661021, 61531009)+4 种基金Beijing Natural Science Foundation (L182018)the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (No. 2017D14)the State Key Laboratory of Rail Traffi c Control and Safety (Contract No. RCS2017K009)Science and Technology Program of Jiangxi Province (20172BCB22016, 20171BBE50057)Shenzhen Science and Technology Program under Grant (No. JCYJ20170817110410346)
文摘With the dawning of the Internet of Everything(IoE) era, more and more novel applications are being deployed. However, resource constrained devices cannot fulfill the resource-requirements of these applications. This paper investigates the computation offloading problem of the coexistence and synergy between fog computing and cloud computing in IoE by jointly optimizing the offloading decisions, the allocation of computation resource and transmit power. Specifically, we propose an energy-efficient computation offloading and resource allocation(ECORA) scheme to minimize the system cost. The simulation results verify the proposed scheme can effectively decrease the system cost by up to 50% compared with the existing schemes, especially for the scenario that the computation resource of fog computing is relatively small or the number of devices increases.
文摘Based on the model of regular condensation it was found that at low concentrations of CN (LC mode) at a height of about 10 m from the condensation level narrow spectra of cloud drop are formed. Their dispersion quickly decreases with increasing height. For high concentrations (HC mode) broad spectra are formed immediately due to the absence of separation into growing drops and CN covered with water. The process of spectra evolution is conducted at a constant height results, in all the cases, in the appearance of asymptotic spectra with a relative width rb ≥ 0.215. To approximate these calculated asymptotic spectra, the modified gamma-distribution with the fixed parameter α = 3 and a variable parameter γ are most suitable. For the intermediate spectra applicable are the simpler mirror-transformed known distributions. The comparison of the above distributions with the experimental spectra of a fog artificially formed in the Big Aerosol Chamber (BAC) of RPA “Typhoon” and the spectra of the morning fog and super cooled stratiform clouds demonstrated their good agreement. The phenomenon of multimodal spectra formation at a sharp rise of stratiform clouds with the velocity more than 0.1 - 0.3 m/s was theoretically shown and experimentally confirmed. The effect of CN high concentrations, evolution processes and sharp fluctuations of vertical velocities on the formation of cloud spectra observed in nature is discussed.