期刊文献+
共找到1,778篇文章
< 1 2 89 >
每页显示 20 50 100
Edge-Fog Enhanced Post-Quantum Network Security: Applications, Challenges and Solutions
1
作者 Seo Yeon Moon Byung Hyun Jo +2 位作者 Abir El Azzaoui Sushil Kumar Singh Jong Hyuk Park 《Computers, Materials & Continua》 2025年第7期25-55,共31页
With the rapid advancement of ICT and IoT technologies,the integration of Edge and Fog Computing has become essential to meet the increasing demands for real-time data processing and network efficiency.However,these t... With the rapid advancement of ICT and IoT technologies,the integration of Edge and Fog Computing has become essential to meet the increasing demands for real-time data processing and network efficiency.However,these technologies face critical security challenges,exacerbated by the emergence of quantum computing,which threatens traditional encryption methods.The rise in cyber-attacks targeting IoT and Edge/Fog networks underscores the need for robust,quantum-resistant security solutions.To address these challenges,researchers are focusing on Quantum Key Distribution and Post-Quantum Cryptography,which utilize quantum-resistant algorithms and the principles of quantum mechanics to ensure data confidentiality and integrity.This paper reviews the current security practices in IoT and Edge/Fog environments,explores the latest advancements in QKD and PQC technologies,and discusses their integration into distributed computing systems.Additionally,this paper proposes an enhanced QKD protocol combining the Cascade protocol and Kyber algorithm to address existing limitations.Finally,we highlight future research directions aimed at improving the scalability,efficiency,and practicality of QKD and PQC for securing IoT and Edge/Fog networks against evolving quantum threats. 展开更多
关键词 edge computing fog computing quantum key distribution security post-quantum cryptography cascade protocol
在线阅读 下载PDF
Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems 被引量:2
2
作者 Naeem Raza Muhammad Asif Habib +3 位作者 Mudassar Ahmad Qaisar Abbas Mutlaq BAldajani Muhammad Ahsan Latif 《Computers, Materials & Continua》 SCIE EI 2024年第10期911-931,共21页
Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/f... Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather. 展开更多
关键词 Vehicle detection YOLO-V5 YOLO-V5s variants YOLO-V8 DAWN dataset foggy driving dataset IoT cloud/edge/fog computing
在线阅读 下载PDF
Policy Network-Based Dual-Agent Deep Reinforcement Learning for Multi-Resource Task Offloading in Multi-Access Edge Cloud Networks 被引量:1
3
作者 Feng Chuan Zhang Xu +2 位作者 Han Pengchao Ma Tianchun Gong Xiaoxue 《China Communications》 SCIE CSCD 2024年第4期53-73,共21页
The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC n... The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC networks can support a wide range of applications. MEC networks can also leverage various types of resources, including computation resources, network resources, radio resources,and location-based resources, to provide multidimensional resources for intelligent applications in 5/6G.However, tasks generated by users often consist of multiple subtasks that require different types of resources. It is a challenging problem to offload multiresource task requests to the edge cloud aiming at maximizing benefits due to the heterogeneity of resources provided by devices. To address this issue,we mathematically model the task requests with multiple subtasks. Then, the problem of task offloading of multi-resource task requests is proved to be NP-hard. Furthermore, we propose a novel Dual-Agent Deep Reinforcement Learning algorithm with Node First and Link features(NF_L_DA_DRL) based on the policy network, to optimize the benefits generated by offloading multi-resource task requests in MEC networks. Finally, simulation results show that the proposed algorithm can effectively improve the benefit of task offloading with higher resource utilization compared with baseline algorithms. 展开更多
关键词 benefit maximization deep reinforcement learning multi-access edge cloud task offloading
在线阅读 下载PDF
Security Implications of Edge Computing in Cloud Networks 被引量:2
4
作者 Sina Ahmadi 《Journal of Computer and Communications》 2024年第2期26-46,共21页
Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r... Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques. 展开更多
关键词 edge Computing cloud Networks Artificial Intelligence Machine Learning cloud Security
在线阅读 下载PDF
A Comprehensive Study of Resource Provisioning and Optimization in Edge Computing
5
作者 Sreebha Bhaskaran Supriya Muthuraman 《Computers, Materials & Continua》 2025年第6期5037-5070,共34页
Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating ... Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating Software Defined Networks(SDN)for enhancing resource orchestration,task scheduling,and traffic management remains a relatively underexplored area with significant innovation potential.This paper provides a comprehensive review of existing mechanisms,categorizing resource provisioning approaches into static,dynamic,and user-centric models,while examining applications across domains such as IoT,healthcare,and autonomous systems.The survey highlights challenges such as scalability,interoperability,and security in managing dynamic and heterogeneous infrastructures.This exclusive research evaluates how SDN enables adaptive policy-based handling of distributed resources through advanced orchestration processes.Furthermore,proposes future directions,including AI-driven optimization techniques and hybrid orchestrationmodels.By addressing these emerging opportunities,thiswork serves as a foundational reference for advancing resource management strategies in next-generation cloud,fog,and edge computing ecosystems.This survey concludes that SDN-enabled computing environments find essential guidance in addressing upcoming management opportunities. 展开更多
关键词 cloud computing edge computing fog computing resource provisioning resource allocation computation offloading optimization techniques software defined network
在线阅读 下载PDF
Cloud control for IIoT in a cloud-edge environment 被引量:1
6
作者 YAN Ce XIA Yuanqing +1 位作者 YANG Hongjiu ZHAN Yufeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1013-1027,共15页
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for... The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms. 展开更多
关键词 5G and time sensitive network(TSN) industrial Internet of Things(IIoT)workflow transmission control protocol(TCP)flows control cloud edge collaboration multi-objective optimal scheduling
在线阅读 下载PDF
Intraspecific trait variation shows that functional diversity decreases in tropical forest natural edges compared to forest interiors
7
作者 Lucas DEZIDERIO SANTANA Jamir A.PRADO-JUNIOR +5 位作者 JoséHugo C.RIBEIRO Kelly M.G.PEREIRA TaináMAMEDE C.SILVA William DOS SANTOS RIBEIRO Fabrício ALVIM CARVALHO Eduardo VAN DEN BERG 《Journal of Mountain Science》 2025年第9期3214-3226,共13页
Functional traits are characteristics associated with the growth,reproduction,and survival of individuals.Studying them helps us understand how species traits drive ecosystem functioning.Thus,we evaluated the differen... Functional traits are characteristics associated with the growth,reproduction,and survival of individuals.Studying them helps us understand how species traits drive ecosystem functioning.Thus,we evaluated the differences in traits and functional diversity between forest edges and interiors,and how the inclusion of intraspecific trait variation affects the assessment of functional diversity in these habitats.We sampled 10 representative forest patches,and,in each patch,we established five plots on the edge and five inside the forest,collecting leaf functional traits,allometric and wood density for all species.We assessed functional diversity using functional richness(FRic),divergence(FDiv),and dispersion(FDis).To assess the impact of incorporating intraspecific variation when comparing trait values and functional diversity indices,we established two scenarios:one that excludes intraspecific variation and another that includes it.We found that the edge and interior harbor individuals with distinct functional traits that alleviate the inherent stress of each habitat.The edge was also found to be more selective in terms of the range of functional traits,resulting in lower functional diversity.Our findings demonstrated that habitats play an important role in intraspecific trait variation(ITV)and that statistically significant differences between habitats,in relation to traits and functional diversity,were better observed with the inclusion of intraspecific variation.Our study highlights the potential of using natural forest patches to understand the edge effect,regardless of habitat loss.Additionally,we emphasize the importance of incorporating ITV into functional diversity studies,especially those on a smaller scale that incorporate quantitative variables,to better understand and predict ecological patterns. 展开更多
关键词 Allometric traits cloud forest edge effect edge-interior gradient Functional richness ITV
原文传递
Indoor Localization Using Multi-Bluetooth Beacon Deployment in a Sparse Edge Computing Environment
8
作者 Soheil Saghafi Yashar Kiarashi +3 位作者 Amy D.Rodriguez Allan I.Levey Hyeokhyen Kwon Gari D.Clifford 《Digital Twins and Applications》 2025年第1期49-56,共8页
Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength... Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength indicator(RSSI)measurements,influenced by physical obstacles,human presence,and electronic interference,poses a significant challenge to accurate localization.In this work,we present an optimised method to enhance indoor localization accuracy by utilising multiple BLE beacons in a radio frequency(RF)-dense modern building environment.Through a proof-of-concept study,we demonstrate that using three BLE beacons reduces localization error from a worst-case distance of 9.09-2.94 m,whereas additional beacons offer minimal incremental benefit in such settings.Furthermore,our framework for BLE-based localization,implemented on an edge network of Raspberry Pies,has been released under an open-source license,enabling broader application and further research. 展开更多
关键词 ambient health monitoring bluetooth low energy cloud computing edge computing indoor localization
在线阅读 下载PDF
Quantum-Edge Cloud Computing for IoT: Bridging the Gap between Cloud, Edge, and Quantum Technologies
9
作者 Shahanaz Akter Md. Khairul Islam Bhuiyan +3 位作者 Md. Bahauddin Badhon Habib Md. Hasan Fatema Akter Mohammad Nahid Ul Islam 《Advances in Internet of Things》 2024年第4期99-120,共22页
The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand... The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand. However, traditional cloud computing frameworks face significant latency, scalability, and security issues. Quantum-Edge Cloud Computing (QECC) offers an innovative solution by integrating the computational power of quantum computing with the low-latency advantages of edge computing and the scalability of cloud computing resources. This study is grounded in an extensive literature review, performance improvements, and metrics data from Bangladesh, focusing on smart city infrastructure, healthcare monitoring, and the industrial IoT sector. The discussion covers vital elements, including integrating quantum cryptography to enhance data security, the critical role of edge computing in reducing response times, and cloud computing’s ability to support large-scale IoT networks with its extensive resources. Through case studies such as the application of quantum sensors in autonomous vehicles, the practical impact of QECC is demonstrated. Additionally, the paper outlines future research opportunities, including developing quantum-resistant encryption techniques and optimizing quantum algorithms for edge computing. The convergence of these technologies in QECC has the potential to overcome the current limitations of IoT frameworks, setting a new standard for future IoT applications. 展开更多
关键词 Quantum-edge cloud Computing (QECC) Internet of Things (IoT) Low Latency Quantum Computing (QC) Scalable cloud Services
在线阅读 下载PDF
Computation Offloading and Scheduling in Edge-Fog Cloud Computing
10
作者 Dadmehr Rahbari Mohsen Nickray 《Journal of Electronic & Information Systems》 2019年第1期26-36,共11页
Resource allocation and task scheduling in the Cloud environment faces many challenges,such as time delay,energy consumption,and security.Also,executing computation tasks of mobile applications on mobile devices(MDs)r... Resource allocation and task scheduling in the Cloud environment faces many challenges,such as time delay,energy consumption,and security.Also,executing computation tasks of mobile applications on mobile devices(MDs)requires a lot of resources,so they can offload to the Cloud.But Cloud is far from MDs and has challenges as high delay and power consumption.Edge computing with processing near the Internet of Things(IoT)devices have been able to reduce the delay to some extent,but the problem is distancing itself from the Cloud.The fog computing(FC),with the placement of sensors and Cloud,increase the speed and reduce the energy consumption.Thus,FC is suitable for IoT applications.In this article,we review the resource allocation and task scheduling methods in Cloud,Edge and Fog environments,such as traditional,heuristic,and meta-heuristics.We also categorize the researches related to task offloading in Mobile Cloud Computing(MCC),Mobile Edge Computing(MEC),and Mobile Fog Computing(MFC).Our categorization criteria include the issue,proposed strategy,objectives,framework,and test environment. 展开更多
关键词 cloud COMPUTING edge COMPUTING fog COMPUTING OFFLOADING SCHEDULING
在线阅读 下载PDF
gEdge:基于容器技术的云边协同的异构计算框架 被引量:4
11
作者 汪沄 汤冬劼 +2 位作者 郭开诚 戚正伟 管海兵 《计算机学报》 EI CAS CSCD 北大核心 2024年第8期1883-1900,共18页
由于按需灵活配置、高可用性、高资源利用率等优点,云计算技术成为过去十年的主流计算范式.随着万物互联时代的到来,单独依赖云计算技术已经无法满足数以亿计的IoT设备及其数据流量的需求.边缘计算可以被看作是云计算的进化,它因5G网络... 由于按需灵活配置、高可用性、高资源利用率等优点,云计算技术成为过去十年的主流计算范式.随着万物互联时代的到来,单独依赖云计算技术已经无法满足数以亿计的IoT设备及其数据流量的需求.边缘计算可以被看作是云计算的进化,它因5G网络和物联网的崛起而诞生.随着云游戏、VR技术以及人工智能技术在日常生活中的广泛运用,对计算资源的需求也在日渐增长.然而,受体积与功耗限制,处于边缘的节点设备算力较弱.本文提出了gEdge:一种基于容器技术的云边协同的异构计算框架.该框架通过GPU虚拟化技术,将云端的物理GPU资源分为多块虚拟GPU资源,按需为边缘节点提供GPU算力资源,并且对用户容器无感知.实验表明,使用gEdge框架使边缘节点使用的容器镜像体积降低了48.8%,容器启动时间降低了35.5%,平均相对运行速度提高了213%. 展开更多
关键词 图形处理器 虚拟化技术 容器技术 边缘计算 云边协同
在线阅读 下载PDF
基于KubeEdge的全国气象监视数据采集软件设计 被引量:1
12
作者 白金婷 罗飞 +5 位作者 孙超 张喜 罗谦 徐达 郭聪 段明静 《计算机技术与发展》 2024年第8期67-72,共6页
为解决气象综合业务实时监控系统(简称“天镜”)对全国气象监视数据采集汇聚安全性、高效性、灵活可管控能力不足的问题,更好地满足全国气象业务集中监视需求,基于“云边协同”的边缘计算KubeEdge架构设计并实现了“天镜”全国气象监视... 为解决气象综合业务实时监控系统(简称“天镜”)对全国气象监视数据采集汇聚安全性、高效性、灵活可管控能力不足的问题,更好地满足全国气象业务集中监视需求,基于“云边协同”的边缘计算KubeEdge架构设计并实现了“天镜”全国气象监视数据采集汇聚软件。国家级“天镜”采用KubeEdge内部通道传递应用程序的控制命令和状态信息,采用气象国省宽带网传输监视数据;采用脚本实现云边端离线自动部署;采用Harbor管理和分发镜像;基于KubeEdge的命令和状态信息实现节点、设备和任务的可视化管控,一体化管控全国边缘节点和采集任务,支持监视任务和数据上传的动态调整。实验结果表明,基于KubeEdge的全国气象监视数据采集汇聚软件有效提高了全国气象监视数据采集汇聚效率和灵活可管控能力,保障了数据传输的安全性。目前该软件已应用于各省(区、市)气象高质量发展通信网络指标评估、全国“天擎”集中监视、全国空间天气全链路状态监视,并取得了良好的业务效益。 展开更多
关键词 边缘计算 Kubeedge 云边协同 数据采集汇聚 灵活可管控 数据传输
在线阅读 下载PDF
On Cost Aware Cloudlet Placement for Mobile Edge Computing 被引量:6
13
作者 Qiang Fan Nirwan Ansari 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第4期926-937,共12页
As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although ... As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although some research works focus on allocating workloads among cloudlets,the cloudlet placement aiming to minimize the deployment cost(i.e.,consisting of both the cloudlet cost and average E2E delay cost)has not been addressed effectively so far.The locations and number of cloudlets have a crucial impact on both the cloudlet cost in the network and average E2E delay of users.Therefore,in this paper,we propose the Cost Aware cloudlet PlAcement in moBiLe Edge computing(CAPABLE)strategy,where both the cloudlet cost and average E2E delay are considered in the cloudlet placement.To solve this problem,a Lagrangian heuristic algorithm is developed to achieve the suboptimal solution.After cloudlets are placed in the network,we also design a workload allocation scheme to minimize the E2E delay between users and their cloudlets by considering the user mobility.The performance of CAPABLE has been validated by extensive simulations. 展开更多
关键词 cloudLET PLACEMENT MOBILE cloud COMPUTING MOBILE edge COMPUTING
在线阅读 下载PDF
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:27
14
作者 Tianchu Zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
在线阅读 下载PDF
Adaptive Service Provisioning for Mobile Edge Cloud 被引量:5
15
作者 HUANG Huawei GUO Song 《ZTE Communications》 2017年第2期2-10,共9页
A mobile edge cloud provides a platform to accommodate the offloaded traffic workload generated by mobile devices.It can significantly reduce the access delay for mobile application users.However,the high user mobilit... A mobile edge cloud provides a platform to accommodate the offloaded traffic workload generated by mobile devices.It can significantly reduce the access delay for mobile application users.However,the high user mobility brings significant challenges to the service provisioning for mobile users,especially to delay-sensitive mobile applications.With the objective to maximize a profit,which positively associates with the overall admitted traffic served by the local edge cloud,and negatively associates with the access delay as well as virtual machine migration delay,we study a fundamental problem in this paper:how to update the service provisioning solution for a given group of mobile users.Such a profit-maximization problem is formulated as a nonlinear integer linear programming and linearized by absolute value manipulation techniques.Then,we propose a framework of heuristic algorithms to solve this Nondeterministic Polynomial(NP)-hard problem.The numerical simulation results demonstrate the efficiency of the devised algorithms.Some useful summaries are concluded via the analysis of evaluation results. 展开更多
关键词 edge cloud MOBILE COMPUTING SERVICE PROVISIONING
在线阅读 下载PDF
An Approach for Enabling Intelligent Edge Gateway Based on Microservice Architecture in Cloud Manufacturing 被引量:7
16
作者 WANG Liping TANG Dunbing +2 位作者 NIE Qingwei SONG Jiaye LIU Changchun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第3期338-348,共11页
Cloud manufacturing has become a reality. It requires sensing and capturing heterogeneous manufacturing resources and extensive data analysis through the industrial internet. However,the cloud computing and serviceori... Cloud manufacturing has become a reality. It requires sensing and capturing heterogeneous manufacturing resources and extensive data analysis through the industrial internet. However,the cloud computing and serviceoriented architecture are slightly inadequate in dynamic manufacturing resource management. This paper integrates the technology of edge computing and microservice and develops an intelligent edge gateway for internet of thing(IoT)-based manufacturing. Distributed manufacturing resources can be accessed through the edge gateway,and cloud-edge collaboration can be realized. The intelligent edge gateway provides a solution for complex resource ubiquitous perception in current manufacturing scenarios. Finally,a prototype system is developed to verify the effectiveness of the intelligent edge gateway. 展开更多
关键词 edge computing intelligent gateway microservice architecture cloud manufacturing
在线阅读 下载PDF
Task Offloading in Edge Computing Using GNNs and DQN
17
作者 Asier Garmendia-Orbegozo Jose David Nunez-Gonzalez Miguel Angel Anton 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2649-2671,共23页
In a network environment composed of different types of computing centers that can be divided into different layers(clod,edge layer,and others),the interconnection between them offers the possibility of peer-to-peer t... In a network environment composed of different types of computing centers that can be divided into different layers(clod,edge layer,and others),the interconnection between them offers the possibility of peer-to-peer task offloading.For many resource-constrained devices,the computation of many types of tasks is not feasible because they cannot support such computations as they do not have enough available memory and processing capacity.In this scenario,it is worth considering transferring these tasks to resource-rich platforms,such as Edge Data Centers or remote cloud servers.For different reasons,it is more exciting and appropriate to download various tasks to specific download destinations depending on the properties and state of the environment and the nature of the functions.At the same time,establishing an optimal offloading policy,which ensures that all tasks are executed within the required latency and avoids excessive workload on specific computing centers is not easy.This study presents two alternatives to solve the offloading decision paradigm by introducing two well-known algorithms,Graph Neural Networks(GNN)and Deep Q-Network(DQN).It applies the alternatives on a well-known Edge Computing simulator called PureEdgeSimand compares them with the two defaultmethods,Trade-Off and Round Robin.Experiments showed that variants offer a slight improvement in task success rate and workload distribution.In terms of energy efficiency,they provided similar results.Finally,the success rates of different computing centers are tested,and the lack of capacity of remote cloud servers to respond to applications in real-time is demonstrated.These novel ways of finding a download strategy in a local networking environment are unique as they emulate the state and structure of the environment innovatively,considering the quality of its connections and constant updates.The download score defined in this research is a crucial feature for determining the quality of a download path in the GNN training process and has not previously been proposed.Simultaneously,the suitability of Reinforcement Learning(RL)techniques is demonstrated due to the dynamism of the network environment,considering all the key factors that affect the decision to offload a given task,including the actual state of all devices. 展开更多
关键词 edge computing edge offloading fog computing task offloading
在线阅读 下载PDF
Combining neural network-based method with heuristic policy for optimal task scheduling in hierarchical edge cloud 被引量:3
18
作者 Zhuo Chen Peihong Wei Yan Li 《Digital Communications and Networks》 SCIE CSCD 2023年第3期688-697,共10页
Deploying service nodes hierarchically at the edge of the network can effectively improve the service quality of offloaded task requests and increase the utilization of resources.In this paper,we study the task schedu... Deploying service nodes hierarchically at the edge of the network can effectively improve the service quality of offloaded task requests and increase the utilization of resources.In this paper,we study the task scheduling problem in the hierarchically deployed edge cloud.We first formulate the minimization of the service time of scheduled tasks in edge cloud as a combinatorial optimization problem,blue and then prove the NP-hardness of the problem.Different from the existing work that mostly designs heuristic approximation-based algorithms or policies to make scheduling decision,we propose a newly designed scheduling policy,named Joint Neural Network and Heuristic Scheduling(JNNHSP),which combines a neural network-based method with a heuristic based solution.JNNHSP takes the Sequence-to-Sequence(Seq2Seq)model trained by Reinforcement Learning(RL)as the primary policy and adopts the heuristic algorithm as the auxiliary policy to obtain the scheduling solution,thereby achieving a good balance between the quality and the efficiency of the scheduling solution.In-depth experiments show that compared with a variety of related policies and optimization solvers,JNNHSP can achieve better performance in terms of scheduling error ratio,the degree to which the policy is affected by re-sources limitations,average service latency,and execution efficiency in a typical hierarchical edge cloud. 展开更多
关键词 edge cloud Task scheduling Neural network Reinforcement learning
在线阅读 下载PDF
Hybrid Approach for Cost Efficient Application Placement in Fog-Cloud Computing Environments
19
作者 Abdulelah Alwabel Chinmaya Kumar Swain 《Computers, Materials & Continua》 SCIE EI 2024年第6期4127-4148,共22页
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.How... Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost. 展开更多
关键词 Placement mechanism application module placement fog computing cloud computing genetic algorithm flamingo search algorithm
在线阅读 下载PDF
Hierarchical Privacy Protection Model in Advanced Metering Infrastructure Based on Cloud and Fog Assistance
20
作者 Linghong Kuang Wenlong Shi Jing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3193-3219,共27页
The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.Howe... The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.However,with the advancement of information and communication technology,new security and privacy challenges have emerged for AMI.To address these challenges and enhance the security and privacy of user data in the smart grid,a Hierarchical Privacy Protection Model in Advanced Metering Infrastructure based on Cloud and Fog Assistance(HPPM-AMICFA)is proposed in this paper.The proposed model integrates cloud and fog computing with hierarchical threshold encryption,offering a flexible and efficient privacy protection solution that significantly enhances data security in the smart grid.The methodology involves setting user protection levels by processing missing data and utilizing fuzzy comprehensive analysis to evaluate user importance,thereby assigning appropriate protection levels.Furthermore,a hierarchical threshold encryption algorithm is developed to provide differentiated protection strategies for fog nodes based on user IDs,ensuring secure aggregation and encryption of user data.Experimental results demonstrate that HPPM-AMICFA effectively resists various attack strategies while minimizing time costs,thereby safeguarding user data in the smart grid. 展开更多
关键词 AMI cloud and fog assistance fuzzy comprehensive analysis hierarchical threshold encryption
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部