期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
THE MICROPHYSICAL STRUCTURE OF SNOW CLOUDS AND THE GROWTH PROCESS OF SNOW PARTICLES IN WINTER IN XINJIANG
1
作者 游来光 王守荣 +1 位作者 王鼎丰 迟玉明 《Acta meteorologica Sinica》 SCIE 1990年第2期221-230,共10页
The microphysical structure of snow clouds and the growth process of snow crystals were observed by means of instrumented aircraft, weather radar, snow crystal observations etc. in Urumqi region during the winter of 1... The microphysical structure of snow clouds and the growth process of snow crystals were observed by means of instrumented aircraft, weather radar, snow crystal observations etc. in Urumqi region during the winter of 1982. The analysis of three cases show that about 70% of snow mass growth is produced in the lower layer below 2000 m under the cold front, and that the concentration of ice crystals is as high as 60 L^(-1) and the supercooled water is absent in lower clouds. We may infer that the deposition of ice crystals and the aggregation of snow crystals are important processes for the snow development. The microphysical structure of the snow band near the front aloft and its characteristics as a seeder cloud are also described in this paper. 展开更多
关键词 THE microphysical structure OF SNOW cloudS AND THE GROWTH PROCESS OF SNOW PARTICLES IN WINTER IN XINJIANG
在线阅读 下载PDF
ANALYSIS AND CASE STUDY ON THE GENERATION OF RADAR ECHO BRIGHT BAND
2
作者 董慧杰 王振会 +1 位作者 郭丽君 王云 《Journal of Tropical Meteorology》 SCIE 2015年第3期285-294,共10页
In this study, the vertical profiles of radar refractive factor(Z) observed with an X-band Doppler radar in Jurong on July 13, 2012 in different periods of a stratiform cloud precipitation process were simulated using... In this study, the vertical profiles of radar refractive factor(Z) observed with an X-band Doppler radar in Jurong on July 13, 2012 in different periods of a stratiform cloud precipitation process were simulated using the Sim RAD software, and the contributions of each impact resulting in the bright band were analyzed quantitatively. In the simulation, the parameters inputted into Sim RAD were updated until the output Z profile was nearly consistent with the observation. The input parameters were then deemed to reflect real conditions of the cloud and precipitation. The results showed that a wider(narrower) and brighter(darker) bright band corresponded to a larger(smaller) amount, wider(narrower) vertical distribution, and larger(smaller) mean diameter of melting particles in the melting layer. Besides this,radar reflectivity factors under the wider(narrower) melting layer were larger(smaller). This may be contributed to the adequate growth of larger rain drops in the upper melting layer. Sensitivity experiments of the generation of the radar bright band showed that a drastic increasing of the complex refractive index due to melting led to the largest impact,making the radar reflectivity factor increase by about 15 d BZ. Fragmentation of large particles was the second most important influence, making the value decrease by 10 d BZ. The collision-coalescence between melting particles, volumetric shrinking due to melting, and the falling speed of raindrops made the radar reflectivity factor change by about 3-7d BZ. Shape transformation from spheres to oblate ellipsoids resulted in only a slight increase in the radar reflectivity factors(about 0.2 d BZ), which might be due to the fact that there are few large particles in stratiform cloud. 展开更多
关键词 bright band radar reflectivity factor cloud microphysical structure
在线阅读 下载PDF
A numerical simulation of latent heating within Typhoon Molave 被引量:1
3
作者 LIU Yang LIN Wenshi +3 位作者 LI Jiangnan WANG Gang YANG Song FENG Yerong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期39-47,共9页
The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heatin... The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heating within Typhoon Molave(2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater,sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly. 展开更多
关键词 latent heat weather research and forecasting model Typhoon Molave thermodynamic structure cloud microphysics zero degree isotherm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部