期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Observational Study of Cloud Microphysical Characteristics of Tropical Cyclones in Different Environmental Fields Using Multi-Source Satellite Data
1
作者 WANG Rui DUAN Yi-hong FENG Jia-ning 《Journal of Tropical Meteorology》 2025年第2期151-164,共14页
In this study, a variety of high-resolution satellite data were used to analyze the similarities and differences in horizontal and vertical cloud microphysical characteristics of 11 tropical cyclones(TCs) in three dif... In this study, a variety of high-resolution satellite data were used to analyze the similarities and differences in horizontal and vertical cloud microphysical characteristics of 11 tropical cyclones(TCs) in three different ocean basins.The results show that for the 11 TCs in different ocean basins, no matter in what season the TCs were generated when they reached or approached Category 4, their melting layers were all distributed in the vertical direction at the height of about 5 km. The high value of ice water contents in the vertical direction of 11 TCs all reach or approach about 2000 g cm^(–3).The total attenuated scattering coefficient at 532 nm, TAB-532, can successfully characterize the distribution of areas with high ice water content when the vertical distribution was concentrated near 0.1 km^(–1)sr^(–1), possibly because the diameter distribution of the corresponding range of aerosol particles had a more favorable effect on the formation of ice nuclei,indicating that aerosols had a significant impact on the ice-phase processes and characteristics. Moreover, by analyzing the horizontal cloud water content, the distribution analysis of cloud water path(CWP) and ice water path(IWP) shows that when the sea surface temperature was at a relatively high value, and the vertical wind shear was relatively small, the CWP and the IWP can reach a relatively high value, which also proves the importance of environmental field factors on the influence of TC cloud microphysical characteristics. 展开更多
关键词 tropical cyclone cloud microphysical characteristics AEROSOL SST vertical wind shear
在线阅读 下载PDF
Dominant Cloud Microphysical Processes of a Torrential Rainfall Event in Sichuan, China 被引量:12
2
作者 HUANG Yongjie CUI Xiaopeng 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期389-400,共12页
High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microp... High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall.The results showed that:(1) In the strong precipitation period,particle sizes of all hydrometeors increased,and mean-mass diameters of graupel increased the most significantly,as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors,followed by graupel's,which was much smaller than that of raindrops.Differences between various hydrometeors' terminal velocities in the strong precipitation period were larger than those in the weak precipitation period,which favored relative motion,collection interaction and transformation between the particles.Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity,and the stronger the precipitation was,the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors' sources and sinks in the strong precipitation period were larger than those in the weak precipitation period,causing a difference in the intensity of precipitation.Water vapor,cloud water,raindrops,graupel and their exchange processes played a major role in the production of the torrential rainfall,and there were two main processes via which raindrops were generated:abundant water vapor condensed into cloud water and,on the one hand,accretion of cloud water by rain water formed rain water,while on the other hand,accretion of cloud water by graupel formed graupel,and then the melting of graupel formed rain water. 展开更多
关键词 torrential rainfall SICHUAN cloud microphysical processes numerical simulation
在线阅读 下载PDF
Cloud microphysical differences with precipitation intensity in a torrential rainfall event in Sichuan, China 被引量:5
3
作者 HUANG Yong-Jie CUI Xiao-Peng WANG Ya-Ping 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第2期90-98,共9页
High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall ... High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall was classified into five bins based on rainfall intensity, and the cloud microphysical characteristics and processes in different bins were studied. The results show that:(1) Hydrometeor content differed distinctly among different bins. Mixing ratios of cloud water, rain water, and graupel enhanced significantly and monotonously with increasing rainfall intensity. With increasing precipitation intensity, the monotonous increase in cloud water number concentration was significant. Meanwhile, number concentrations of rain water and graupel increased at first and then decreased or increased slowly in larger rainfall bins.(2) With precipitation intensity increasing, cloud microphysical conversion processes closely related to the production of rainwater, directly(accretion of cloud water by rain(QCLcr) and melting of graupel(QMLgr)) or indirectly(water vapor condensation and accretion of cloud water by graupel), increased significantly.(3) As the two main sources of rainwater, QCLcrincreased monotonously with increasing precipitation intensity, while QMLgr increased slowly, even tending to cease increasing in larger rainfall bins. 展开更多
关键词 cloud microphysics cloud microphysical processes torrential rainfall numerical simulation
在线阅读 下载PDF
Aircraft observation of cloud microphysical characteristics of pre-stratiform-cloud precipitation in Jiangxi Province 被引量:3
4
作者 FU Yuan LEI Heng-Chi 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第5期364-371,共8页
Based on Droplet Measurement Technologies data of a pre-stratiform-cloud precipitation event in Ganzhou, Jiangxi Province, on 11 November 2015, and combined with radar data, this paper comprehensively analyzes the mac... Based on Droplet Measurement Technologies data of a pre-stratiform-cloud precipitation event in Ganzhou, Jiangxi Province, on 11 November 2015, and combined with radar data, this paper comprehensively analyzes the macro-and microphysical characteristics of cloud in the upper trough.The results show that:(1) Detection takes place in the early stage of precipitation and the cloud has multiple layers. The cloud type is stratiform(Sc) and the height of the cloud base is 1009 m, 1009–1700 m is the low Sc layer, 1700–3000 m is the no-cloud level, and 3000 to the maximum height detected is another Sc layer.(2) The Sc is inhomogeneous in the horizontal and vertical directions.The particle number concentration and the effective diameter below the 0 °C layer is significantly higher than that above the 0 °C layer, which is in accordance with the ‘seeder–feeder' mechanism.Above the 0 °C layer is seeder cloud, where needle, column ice crystals and water droplets coexist,and sublimation and coalescence are the main processes. The morphology of ice crystals changes from needle to column, plate, and polymer as height decreases. Below the 0 °C warm layer is a supply cloud, and the particles develop in the supply cloud with abundant liquid water content. Ice melting and coalescence dominate the warm layer, which makes the effective diameter significantly increase. Down to 4150 m, the ice melts completely into raindrops. 展开更多
关键词 Stratiform cloud aircraft observation cloud microphysics Jiangxi Province
在线阅读 下载PDF
AN SENSITIVITY SIMULATION ABOUT CLOUD MICROPHYSICAL PROCESSES OF TYPHOON CHANCHU 被引量:2
5
作者 林文实 吴剑斌 +3 位作者 李江南 梁旭东 方杏芹 徐穗珊 《Journal of Tropical Meteorology》 SCIE 2010年第4期390-401,共12页
With the Reisner-2 bulk microphysical parameterization of the fifth-generation Pennsylvania State University-U.S. National Center for Atmospheric Research (PSU--NCAR) Mesoscale Model (MM5), this paper investigates... With the Reisner-2 bulk microphysical parameterization of the fifth-generation Pennsylvania State University-U.S. National Center for Atmospheric Research (PSU--NCAR) Mesoscale Model (MM5), this paper investigates the microphysical sensitivities of Typhoon Chanchu. Four different microphysical sensitivity experiments were designed with an objective to evaluate their respective impacts in modulating intensity forecasts and microphysics budgets of the typhoon. The set of sensitivity experiments were conducted that comprised (a) a control experiment (CTL), (b) NEVPRW from which evaporation of rain water was suppressed, (c) NGP from which graupel was taken, and (d) NMLT from which melting of snow and graupel was removed. We studied the impacts of different cloud microphysical processes on the track, intensity and precipitation of the typhoon, as well as the kinematics, thermodynamics and vertical structural characteristics of hydrometeors in the inner core of the typhoon. Additionally, the budgets of the cloud microphysical processes in the fine domain were calculated to quantify the importance of each microphysical process for every sensitivity experiment. The primary results are as follows: (1) It is found that varying cloud microphysics parameters produce little sensitivity in typhoon track experiments. (2) The experiment of NGP produces the weakest storm, while the experiment of NMLT produces the strongest storm, and the experiment of NEVPRW also produces stronger storms than CTL. (3) Varying parameters of cloud rnicrophysics have obvious impacts on the precipitation, kinematics, and thermodynamics of the typhoon and the vertical structural characteristics of hydrometeors in the typhoon's inner core. (4) Most budgets of cloud microphysics in NMLT are larger than in CTL, while they are 20%-60% smaller in NEVPRW than in CTL. 展开更多
关键词 Typhoon Chanchu cloud microphysics SIMULATION
在线阅读 下载PDF
Evaluating the Impacts of Cloud Microphysical and Overlap Parameters on Simulated Clouds in Global Climate Models
6
作者 Haibo WANG Hua ZHANG +3 位作者 Bing XIE Xianwen JING Jingyi HE Yi LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2172-2187,I0023,I0024,共18页
The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud mic... The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty. 展开更多
关键词 cloud fraction cloud microphysics scheme cloud radiative forcing vertical cloud overlap
在线阅读 下载PDF
Impact of Cloud Microphysical Processes on the Simulation of Typhoon Rananim near Shore. Part I: Cloud Structure and Precipitation Features 被引量:7
7
作者 CHENG Rui YU Rucong +1 位作者 FU Yunfei XU Youping 《Acta meteorologica Sinica》 SCIE 2011年第4期441-455,共15页
By using the Advanced Regional Eta-coordinate Model (AREM), the basic structure and cloud features of Typhoon Rananim are simulated and verified against observations. Five sets of experiments are designed to investi... By using the Advanced Regional Eta-coordinate Model (AREM), the basic structure and cloud features of Typhoon Rananim are simulated and verified against observations. Five sets of experiments are designed to investigate the effects of the cloud microphysical processes on the model cloud structure and precipitation features. The importance of the ice-phase microphysics, the cooling effect related to microphysical characteristics change, and the influence of terminal velocity of graupel are examined. The results indicate that the cloud microphysical processes impact more on the cloud development and precipitation features of the typhoon than on its intensity and track. Big differences in the distribution pattern and content of hydro-meteors, and types and amount of rainfall occur in the five experiments, resulting in different heating and cooling effects. The largest difference of 24-h rain rate reaches 52.5 mm h-1 . The results are summarized as follows: 1) when the cooling effect due to the evaporation of rain water is excluded, updrafts in the typhoon's inner core are the strongest with the maximum vertical velocity of -19 Pa s-1 and rain water and graupel grow most dominantly with their mixing ratios increased by 1.8 and 2.5 g kg-1, respectively, compared with the control experiment; 2) the melting of snow and graupel affects the growth of rain water mainly in the spiral rainbands, but much less significantly in the eyewall area; 3) the warm cloud microphysical process produces the smallest rainfall area and the largest percentage of convective precipitation (63.19%), while the largest rainfall area and the smallest percentage of convective precipitation (48.85%) are generated when the terminal velocity of graupel is weakened by half. 展开更多
关键词 typhoon structure PRECIPITATION cloud microphysical processes AREM model
在线阅读 下载PDF
Impact of Cloud Microphysical Processes on the Simulation of Typhoon Rananim near Shore. Part II: Typhoon Intensity and Track 被引量:4
8
作者 CHENG Rui YU Rucong +1 位作者 XU Youping FU Yunfei 《Acta meteorologica Sinica》 SCIE 2011年第4期456-466,共11页
The impact of cloud microphysical processes on the simulated intensity and track of Typhoon Rananim is discussed and analyzed in the second part of this study. The results indicate that when the cooling effect due to ... The impact of cloud microphysical processes on the simulated intensity and track of Typhoon Rananim is discussed and analyzed in the second part of this study. The results indicate that when the cooling effect due to evaporation of rain water is excluded, the simulated 36-h maximum surface wind speed of Typhoon Rananim is about 7 m s-1 greater than that from all other experiments; however, the typhoon landfall location has the biggest bias of about 150 km against the control experiment. The simulated strong outer rainbands and the vertical shear of the environmental flow are unfavorable for the deepening and maintenance of the typhoon and result in its intensity loss near the landfall. It is the cloud microphysical processes that strengthen and create the outer spiral rainbands, which then increase the local convergence away from the typhoon center and prevent more moisture and energy transport to the inner core of the typhoon. The developed outer rainbands are supposed to bring dry and cold air mass from the middle troposphere to the planetary boundary layer (PBL). The other branch of the cold airflow comes from the evaporation of rain water itself in the PBL while the droplets are falling. Thus, the cut-off of the warm and moist air to the inner core and the invasion of cold and dry air to the eyewall region are expected to bring about the intensity reduction of the modeled typhoon. Therefore, the deepening and maintenance of Typhoon Rananim during its landing are better simulated through the reduction of these two kinds of model errors. 展开更多
关键词 typhoon intensity cloud microphysical processes spiral rainband environmental wind shear
在线阅读 下载PDF
Cloud Microphysical Budget Associated with Torrential Rainfall During the Landfall of Severe Tropical Storm Bilis (2006)
9
作者 王东海 刘英 +3 位作者 朱平 尹金方 李小凡 陶卫国 《Acta meteorologica Sinica》 SCIE 2013年第2期263-272,共10页
Effects of vertical wind shear, radiation, and ice clouds on cloud microphysical budget associated with torrential rainfall during landfall of severe tropical storm Bilis (2006) are investigated by using a series of... Effects of vertical wind shear, radiation, and ice clouds on cloud microphysical budget associated with torrential rainfall during landfall of severe tropical storm Bilis (2006) are investigated by using a series of analysis of two-day grid-scale sensitivity experiment data. When upper-tropospheric upward motions and lower-tropospheric downward motions occur on 15 July 2006, the removal of vertical wind shear and ice clouds increases rainfall contributions from the rainfall type (CM) associated with positive net condensation and hydrometeor loss/convergence, whereas the exclusion of cloud radiative effects and cloud-radiation in- teraction reduces rainfall contribution from CM. The elimination of vertical wind shear and cloud-radiation interaction increases rainfall contribution from the rainfall type (Cm) associated with positive net conden- sation and hydrometeor gain/divergence, but the removal of cloud radiative effects and ice clouds decreases rainfall contribution from Cm. The enhancements in rainfall contribution from the rainfall type (cM) as- sociated with negative net condensation and hydrometeor loss/convergence are caused by the exclusion of cloud radiative effects, cloud-radiation interaction and ice clouds, whereas the reduction in rainfall contri- bution from cM results from the removal of vertical wind shear. When upward motions appear throughout the troposphere on 16 July, the exclusion of all these effects increases rainfall contribution from CM, but generally decreases rainfall contributions from Cm and cM. 展开更多
关键词 cloud radiation effects cloud-radiation interaction ice clouds cloud microphysical budget torrential rainfall
在线阅读 下载PDF
Cloud Microphysical Characteristics of Typhoon Meranti(2016)during Its Rapid Intensification:Model Validation and SST Sensitivity Experiments
10
作者 Rui WANG Yihong DUAN Jianing FENG 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期542-557,共16页
Cloud microphysics plays an important role in determining the intensity and precipitation of tropical cyclones(TCs).In this study,a high-resolution numerical simulation by WRF(version 4.2)of Typhoon Meranti(2016)durin... Cloud microphysics plays an important role in determining the intensity and precipitation of tropical cyclones(TCs).In this study,a high-resolution numerical simulation by WRF(version 4.2)of Typhoon Meranti(2016)during its rapid intensification(RI)period was conducted and validated by multi-source observations including Cloud-Sat and Global Precipitation Mission satellite data.The snow and ice particles content were found to increase most rapidly compared with other hydrometeors during the RI process.Not all hydrometeors continued to increase.The graupel content only increased in the initial RI stage,and then decreased afterwards due to precipitation during the RI process.In addition,sea surface temperature(SST)sensitivity experiments showed that,although the intensity of the TC increased with a higher SST,not all hydrometeors increased.The graupel content continued to increase with the increase in SST,mainly due to the accumulation of more lower-temperature supercooled water vapor at the corresponding height.The content of snow decreased with the increase in SST because stronger vertical motion at the corresponding height affected the aggregation of ice crystals. 展开更多
关键词 tropical cyclone rapid intensification cloud microphysical characteristics sea surface temperature(SST)
原文传递
Cloud Droplet Spectrum Evolution Driven by Aerosol Activation and Vapor Condensation:A Comparative Study of Different Bulk Parameterization Schemes
11
作者 Jun ZHANG Jiming SUN +2 位作者 Yu KONG Wei DENG Wenhao HU 《Advances in Atmospheric Sciences》 2025年第7期1316-1332,共17页
Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in we... Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth. 展开更多
关键词 cloud microphysical parameterization cloud droplet spectrum aerosol activation cloud droplet condensation
在线阅读 下载PDF
Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles 被引量:1
12
作者 Yuan WANG Jonathan M. VOGEL +7 位作者 Yun LIN Bowen PAN Jiaxi HU Yangang LIU Xiquan DONG Jonathan H. JIANG Yuk L. YUNG Renyi ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第2期234-247,共14页
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative ... Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. 展开更多
关键词 aerosol-cloud-radiation interactions cloud-resolving model cloud microphysics and macrophysics precipita-tion
在线阅读 下载PDF
Improvement of cloud microphysical parameterization and its advantages in simulating precipitation along the Sichuan-Xizang Railway 被引量:1
13
作者 Xiaoqi XU Zhiwei HENG +6 位作者 Yueqing LI Shunjiu WANG Jian LI Yuan WANG Jinghua CHEN Peiwen ZHANG Chunsong LU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第3期856-873,共18页
The Sichuan-Xizang Railway is an important part of the railway network in China, and geological disasters, such as mountain floods and landslides, frequently occur in this region. Precipitation is an important cause o... The Sichuan-Xizang Railway is an important part of the railway network in China, and geological disasters, such as mountain floods and landslides, frequently occur in this region. Precipitation is an important cause of these disasters;therefore,accurate simulation of the precipitation in this region is highly important. In this study, the descriptions for uncertain processes in the cloud microphysics scheme are improved;these processes include cloud droplet activation, cloud-rain autoconversion, rain accretion by cloud droplets, and the entrainment-mixing process. In the default scheme, the cloud water content of different sizes corresponds to the same cloud droplet concentration, which is inconsistent with the actual content;this results in excessive cloud droplet size, unreasonable related conversion rates of microphysical process(such as cloud-rain autoconversion), and an overestimation of precipitation. Our new scheme overcomes the problem of excessive cloud droplet size. The processes of cloudrain autoconversion and rain accretion by cloud droplets are similar to the stochastic collection equation, and the mixing mechanism of cloud droplets is more consistent with that occurred during the actual physical process in the cloud. Based on the new and old schemes, multiple precipitation processes in the flood season of 2021 along the Sichuan-Xizang Railway are simulated, and the results are evaluated using ground observations and satellite data. Compared to the default scheme, the new scheme is more suitable for the simulation of cloud physics, reducing the simulation deviation of the liquid water path and droplet radius from 2 times to less than 1 time and significantly alleviating the overestimation of precipitation intensity and range of precipitation center. The average root-mean-square error is reduced by 22%. Our results can provide a scientific reference for improving precipitation forecasting and disaster prevention in this region. 展开更多
关键词 The Sichuan-Xizang Railway cloud microphysics PRECIPITATION Model improvement
原文传递
Effects of sea surface temperature,cloud radiative and microphysical processes,and diurnal variations on rainfall in equilibrium cloud-resolving model simulations 被引量:1
14
作者 蒋哲 李小凡 +1 位作者 周玉淑 高守亭 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期308-315,共8页
The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolvin... The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. 展开更多
关键词 rain rate sea surface temperature radiative and microphysical effects of ice and water clouds diurnal variation
原文传递
Impacts of observation-based cloud droplet size distributions on the simulation of warm stratiform precipitation using a double-moment microphysics scheme
15
作者 Ryohei Misumi Akihiro Hashimoto 《Atmospheric and Oceanic Science Letters》 2025年第5期1-7,共7页
A double-moment cloud microphysics scheme requires an assumption for cloud droplet size distributions(DSDs).However,since observations of cloud DSDs are limited,default values for shape parameters and cloud condensati... A double-moment cloud microphysics scheme requires an assumption for cloud droplet size distributions(DSDs).However,since observations of cloud DSDs are limited,default values for shape parameters and cloud condensation nuclei activation parameters are often used in numerical simulations.In this study,the effects of cloud DSDs on numerical simulations of warm stratiform precipitation around Tokyo are investigated using the Japan Meteorological Agency's non-hydrostatic model,which incorporates a double-moment cloud microphysics scheme.Simulations using the default cloud DSD showed higher cloud droplet number concentrations and lower radar reflectivity than observed data,suggesting that the default cloud DSD is too narrow.Simulations with a cloud DSD based on in situ cloud observations corrected these errors.In addition,observation-based cloud DSDs affected rainfall amounts through the autoconversion rate of cloud water and improved the threat scores.These results suggest that realistic cloud DSDs should be provided for double-moment cloud microphysics schemes in scientific studies. 展开更多
关键词 cloud microphysics cloud droplet size distribution Autoconversion
在线阅读 下载PDF
Effect of Scattered Solar Radiation on the Informativeness of Polarization Lidar Studies of High-Level Clouds
16
作者 Ignatii Samokhvalov Ilia Bryukhanov +5 位作者 Ivan Akimov Olesia Kuchinskaia Maxim Penzin Denis Romanov Evgeny Ni Ivan Zhivotenyuk 《Journal of Environmental & Earth Sciences》 2025年第6期148-156,共9页
During daylight laser polarization sensing of high-level clouds(HLCs),the lidar receiving system generates a signal caused by not only backscattered laser radiation,but also scattered solar radiation,the intensity and... During daylight laser polarization sensing of high-level clouds(HLCs),the lidar receiving system generates a signal caused by not only backscattered laser radiation,but also scattered solar radiation,the intensity and polarization of which depends on the Sun’s location.If a cloud contains spatially oriented ice particles,then it becomes anisotropic,that is,the coefficients of directional light scattering of such a cloud depend on the Sun’s zenith and azimuth angles.In this work,the possibility of using the effect of anisotropic scattering of solar radiation on the predictive ability of machine learning algorithms in solving the problem of predicting the HLC backscattering phase matrix(BSPM)was evaluated.The hypothesis that solar radiation scattered on HLCs has no effect on the BSPM elements of such clouds determined with a polarization lidar was tested.The operation of two algorithms for predicting the BSPM elements is evaluated.To train the first one,meteorological data were used as input parameters;for the second algorithm,the azi-muthal and zenith angles of the Sun’s position were added to the meteorological parameters.It is shown that there is no significant improvement in the predictive ability of the algorithm. 展开更多
关键词 High-Level clouds(HLCs) Polarization Lidar Backscattering Phase Matrix(BSPM) Sun’s Azimuthal and Zenith Angles Scattered Solar Radiation cloud Microphysics Machine Learning(ML) Random Forest
在线阅读 下载PDF
Macro-and Micro-physical Characteristics of Different Parts of Mixed Convective-stratiform Clouds and Differences in Their Responses to Seeding 被引量:2
17
作者 Dejun LI Chuanfeng ZHAO +5 位作者 Peiren LI Cao Liu Dianli GONG Siyao LIU Zhengteng YUAN Yingying CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2040-2055,共16页
This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in ... This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018,based on the observations from the aircraft,the Suomi National Polar-Orbiting Partnership(NPP)satellite,and the high-resolution Himawari-8(H8)satellite.The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region.This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat,resulting in strengthened updrafts,enhanced radar echoes,higher cloud tops,and more and larger precipitation particles.In contrast,in the stratiform cloud region,after the Silver Iodide(AgI)seeding,the radar echoes become significantly weaker at heights close to the seeding layer,with the echo tops lowered by 1.4–1.7 km.In addition,a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km,and features such as icing seeding tracks appear.These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part.The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding;while in the stratiform region,a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding,which moves along the wind direction as width increases. 展开更多
关键词 airborne Ka-band Precipitation Radar(KPR) mixed convective-stratiform clouds convective region stratiform region cloud seeding cloud microphysical properties
在线阅读 下载PDF
ANALYSING THE CLOUD MICRO-AND MACRO-PHYSICAL PROPERTIES OF THE CYCLONE EYE WALL AND ITS SURROUNDING SPIRAL CLOUD BANDS BASED ON CLOUDSAT AND TRMM DATA 被引量:2
18
作者 CHAI Qian-ming WANG Wen-cai HUANG Zhong-wei 《Journal of Tropical Meteorology》 SCIE 2018年第2期253-262,共10页
In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five ... In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five tropical cyclones(TCs) in 2013. The results show that the ice-phase clouds of a mature TC are mainly above 5 km. With increasing altitude, the cloud droplet effective radius decreases, and the particle number concentration increases. Ice water content first increases and then decreases with increasing height. In the eye area, in addition to the well-known warm-core area, another warm core is also apparent around the eye at a height of 8 to 15 km. The horizontal distribution of precipitation is characterized by large-scale stratiform precipitation mixed with independent convective precipitation. The height of precipitation is mostly below 7.5 km, and the heavy rain is mainly below 5 km. When the peripheral convective clouds are strong enough, ice particles would be generated, thus providing conditions that are favourable for the formation of precipitation below. 展开更多
关键词 SYNOPTIC tropical cyclone cloud microphysical properties thermal structure cloud Sat TRMM
在线阅读 下载PDF
Aircraft Measurements of Cloud–Aerosol Interaction over East Inner Mongolia 被引量:4
19
作者 Yuhuan Lü Hengchi LEI Jiefan YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第8期983-992,共10页
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed ... To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions. 展开更多
关键词 aircraft observation aerosol warm cloud microphysical properties
在线阅读 下载PDF
Analysis on the Macro and Micro Physical Characteristics of Stratiform Cloud in Henan
20
作者 李铁林 尹彬 +1 位作者 郭献林 邵振平 《Meteorological and Environmental Research》 CAS 2010年第10期96-100,共5页
By using the microphysical data of stratiform cloud in Henan which were observed by PMS airborne cloud particle measure system on March 23 in 2007 and combining with the radar,satellite,sounding data,the macro and mic... By using the microphysical data of stratiform cloud in Henan which were observed by PMS airborne cloud particle measure system on March 23 in 2007 and combining with the radar,satellite,sounding data,the macro and micro physical structure characteristics of cloud were analyzed.The results showed that the average diameter of small cloud drop which was measured by FSSP-100 in the warm layer of cloud was mainly during 5-12 μm,and the average value was 7.33 μm.The biggest diameter of small cloud drop changed during 14-47 μm,and the average value was 27.80 μm.The total number concentration scope of small cloud drop was during 47.73-352.00 drop/cm3,and the average value was 160 drop/cm3.In the cold layer of cloud,the biggest diameter of small cloud particle(included the cloud droplet and the ice crystals)which was measured by FSSP-100 was 24.8 μm.The total number concentration scope of small cloud particle was during 0.899-641.000 drop/cm3,and the average value was 297 drop/cm3.The airborne King heat line liquid water content instrument observed that the super-cooling liquid water existed in the cloud.The super-cooling cloud water content changed during 0.02-0.20 g/m3,and the average value was 0.093 g/m3.The biggest value which was 0.202 g/m3 appeared in 4 368 m height(the temperature was-8.5 ℃).The particle spectrum type in the cloud was mainly the negative exponent type and the single peak type. 展开更多
关键词 microphysical characteristic of cloud Number concentration Super-cooling cloud water content China
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部