Background:The universal occurrence of randomly distributed dark holes(i.e.,data pits appearing within the tree crown)in LiDAR-derived canopy height models(CHMs)negatively affects the accuracy of extracted forest inve...Background:The universal occurrence of randomly distributed dark holes(i.e.,data pits appearing within the tree crown)in LiDAR-derived canopy height models(CHMs)negatively affects the accuracy of extracted forest inventory parameters.Methods:We develop an algorithm based on cloth simulation for constructing a pit-free CHM.Results:The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details.Our pitfree CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms,as evidenced by the lowest average root mean square error(0.4981 m)between the reference CHMs and the constructed pit-free CHMs.Moreover,our pit-free CHMs show the best performance overall in terms of maximum tree height estimation(average bias=0.9674 m).Conclusion:The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.展开更多
Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extractio...Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation.展开更多
The primary goal of cloth simulation is to express object behavior in a realistic manner and achieve real-time performance by following the fundamental concept of physic.In general,the mass–spring system is applied t...The primary goal of cloth simulation is to express object behavior in a realistic manner and achieve real-time performance by following the fundamental concept of physic.In general,the mass–spring system is applied to real-time cloth simulation with three types of springs.However,hard spring cloth simulation using the mass–spring system requires a small integration time-step in order to use a large stiffness coefficient.Furthermore,to obtain stable behavior,constraint enforcement is used instead of maintenance of the force of each spring.Constraint force computation involves a large sparse linear solving operation.Due to the large computation,we implement a cloth simulation using adaptive constraint activation and deactivation techniques that involve the mass-spring system and constraint enforcement method to prevent excessive elongation of cloth.At the same time,when the length of the spring is stretched or compressed over a defined threshold,adaptive constraint activation and deactivation method deactivates the spring and generate the implicit constraint.Traditional method that uses a serial process of the Central Processing Unit(CPU)to solve the system in every frame cannot handle the complex structure of cloth model in real-time.Our simulation utilizes the Graphic Processing Unit(GPU)parallel processing with compute shader in OpenGL Shading Language(GLSL)to solve the system effectively.In this paper,we design and implement parallel method for cloth simulation,and experiment on the performance and behavior comparison of the mass-spring system,constraint enforcement,and adaptive constraint activation and deactivation techniques the using GPU-based parallel method.展开更多
A novel continuum-based fast projection scheme is proposed for cloth simulation.Cloth geometry is described by NURBS,and the dynamic response is modeled by a displacement-only Kirchhoff-Love shell element formulated d...A novel continuum-based fast projection scheme is proposed for cloth simulation.Cloth geometry is described by NURBS,and the dynamic response is modeled by a displacement-only Kirchhoff-Love shell element formulated directly on NURBS geometry.The fast projection method,which solves strain limiting as a constrained Lagrange problem,is extended to the continuum version.Numerical examples are studied to demonstrate the performance of the current scheme.The proposed approach can be applied to grids of arbitrary topology and can eliminate unrealistic over-stretching efficiently if compared to spring-based methodologies.展开更多
在CFD平台软件OpenFOAM上,用数值模拟的方法分析了变截面毛细流道中的毛细流动行为。该数值方法利用流体体积比函数(volume of fluid,VOF)来跟踪流体流动前沿界面,再用连续表面张力模型(continue surface force,CSF)来描述毛细驱动力。...在CFD平台软件OpenFOAM上,用数值模拟的方法分析了变截面毛细流道中的毛细流动行为。该数值方法利用流体体积比函数(volume of fluid,VOF)来跟踪流体流动前沿界面,再用连续表面张力模型(continue surface force,CSF)来描述毛细驱动力。VOF和CSF方法的结合使得毛细驱动力的求解能适应截面的变化。分别用该数值方法和解析方法对变间距平行平板间毛细流动进行了分析,发现两者的分析结果一致性较好。基于VOF和CSF的数值方法有望进一步应用于更复杂流场中的毛细流动分析。展开更多
A sweating apparatus has been developed to permit simultaneous measurement for fabric temperature change and relative humidity change at outer still air layer of fabrics. In this paper, we compared the temperature and...A sweating apparatus has been developed to permit simultaneous measurement for fabric temperature change and relative humidity change at outer still air layer of fabrics. In this paper, we compared the temperature and relative humidity changes for silk fabrics with polyester fabrics and got GM(1,P) relation models respectively between maximum fabric temperature change, maximum relative humidity change at outer still air layer and relative fabric character parameters. Furthermore, by comparing the objective experiments with subjective wear trials, it is found that the amounts of the change rate of fabric temperature and relative humidity at outer still layer are the most important factors which influence clothing comfort in dynamic moisture transfer condition. The more the changes of temperature and R.H., the more the mugginess and the thermal sensation.展开更多
A physical-based particle system is employed for cloth modeling supported by two basic algorithms, between which one is the construction of the internal and external forces acting on the particle system in terms of KE...A physical-based particle system is employed for cloth modeling supported by two basic algorithms, between which one is the construction of the internal and external forces acting on the particle system in terms of KES-F bending and shearing tests, and the other is the collision algorithm of which the collision detection is carried by means of bi-section of time step and the collision response is handled according to the empirical law for frictionless collision With these algorithms. the geometric state of parcles can be expressed as ordinary differential equationswhich is numerically solved by fourth order Runge- Kutta integration. Different draping figures of cotton fabric and wool fabric prove that such a particle system is suitable for 3D cloth modeling and simulation.展开更多
A series of NiMoO_(4)-nano rod/carbon cloth composite electrodes with different loadings(x)of NiMoO_(4)-NRs was synthesized with a view to implementing an efficient hydrogen evolution reaction(HER).The NiMoO_(4) nano-...A series of NiMoO_(4)-nano rod/carbon cloth composite electrodes with different loadings(x)of NiMoO_(4)-NRs was synthesized with a view to implementing an efficient hydrogen evolution reaction(HER).The NiMoO_(4) nano-rods(NRs)were prepared by growing them directly on carbon cloth(CC)via a simple hydrothermal reaction coupled with an annealing treatment.The resulting NiMoO_(4)-NR/CC-x composites served directly as electrodes for electrolysis of an alkaline medium and a simulated sea water.The results indicated that among the NiMoO_(4)-NR/CC-x composites,the NiMoO_(4)-NR/CC-10 composite possessed the highest HER activity with an overpotential of 244.8 mV at 10 mA/cm^(2),a Tafel slope of 95 mV/dec,the fastest charge transfer rate(R_(ct)<1Ω)and good stability in alkaline media.Even in simulated seawater,the NiMoO_(4)-NR/CC-10 composite showed good stability.The outstanding HER activity and stability may originate from the strong interaction between Ni and Mo in the NiMoO_(4) NRs as well as the efficient charge transfer process and the rate of the HER due to the synergistic effect involving the CC and NiMoO_(4) NRs.展开更多
In order to better verify the regulation effect of various methods of composite refrigeration shielding clothing on the surface temperature of human body in different working environments, it is necessary to make a re...In order to better verify the regulation effect of various methods of composite refrigeration shielding clothing on the surface temperature of human body in different working environments, it is necessary to make a reasonable evaluation of refrigeration devices and sensitive areas of human body. The body temperature of five normal men was measured, and the changes of body surface temperature under different environmental conditions were investigated. It was concluded that chest, back and forehead were the areas with the highest body temperature, and the mathematical model of refrigeration system with "people-cooling shielding clothing-exterior" as the core was established. The cooling effect of shielding clothing under various environmental conditions was studied and simulated. It is found that the introduction of phase change agent or electric fan in the shield near the chest and back can effectively reduce the body temperature and improve the comfort of the body.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41671414,41971380 and 41171265)the National Key Research and Development Program of China(No.2016YFB0501404).
文摘Background:The universal occurrence of randomly distributed dark holes(i.e.,data pits appearing within the tree crown)in LiDAR-derived canopy height models(CHMs)negatively affects the accuracy of extracted forest inventory parameters.Methods:We develop an algorithm based on cloth simulation for constructing a pit-free CHM.Results:The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details.Our pitfree CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms,as evidenced by the lowest average root mean square error(0.4981 m)between the reference CHMs and the constructed pit-free CHMs.Moreover,our pit-free CHMs show the best performance overall in terms of maximum tree height estimation(average bias=0.9674 m).Conclusion:The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.
文摘Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF-2019R1F1A1062752)funded by the Ministry of Education+1 种基金funded by BK21 FOUR(Fostering Outstanding Universities for Research)(No.:5199990914048)supported by the Soonchunhyang University Research Fund.
文摘The primary goal of cloth simulation is to express object behavior in a realistic manner and achieve real-time performance by following the fundamental concept of physic.In general,the mass–spring system is applied to real-time cloth simulation with three types of springs.However,hard spring cloth simulation using the mass–spring system requires a small integration time-step in order to use a large stiffness coefficient.Furthermore,to obtain stable behavior,constraint enforcement is used instead of maintenance of the force of each spring.Constraint force computation involves a large sparse linear solving operation.Due to the large computation,we implement a cloth simulation using adaptive constraint activation and deactivation techniques that involve the mass-spring system and constraint enforcement method to prevent excessive elongation of cloth.At the same time,when the length of the spring is stretched or compressed over a defined threshold,adaptive constraint activation and deactivation method deactivates the spring and generate the implicit constraint.Traditional method that uses a serial process of the Central Processing Unit(CPU)to solve the system in every frame cannot handle the complex structure of cloth model in real-time.Our simulation utilizes the Graphic Processing Unit(GPU)parallel processing with compute shader in OpenGL Shading Language(GLSL)to solve the system effectively.In this paper,we design and implement parallel method for cloth simulation,and experiment on the performance and behavior comparison of the mass-spring system,constraint enforcement,and adaptive constraint activation and deactivation techniques the using GPU-based parallel method.
基金Chao Zheng thanks the support from Sichuan Science and Technology Program[Grant No.2021JDRC0007].
文摘A novel continuum-based fast projection scheme is proposed for cloth simulation.Cloth geometry is described by NURBS,and the dynamic response is modeled by a displacement-only Kirchhoff-Love shell element formulated directly on NURBS geometry.The fast projection method,which solves strain limiting as a constrained Lagrange problem,is extended to the continuum version.Numerical examples are studied to demonstrate the performance of the current scheme.The proposed approach can be applied to grids of arbitrary topology and can eliminate unrealistic over-stretching efficiently if compared to spring-based methodologies.
文摘在CFD平台软件OpenFOAM上,用数值模拟的方法分析了变截面毛细流道中的毛细流动行为。该数值方法利用流体体积比函数(volume of fluid,VOF)来跟踪流体流动前沿界面,再用连续表面张力模型(continue surface force,CSF)来描述毛细驱动力。VOF和CSF方法的结合使得毛细驱动力的求解能适应截面的变化。分别用该数值方法和解析方法对变间距平行平板间毛细流动进行了分析,发现两者的分析结果一致性较好。基于VOF和CSF的数值方法有望进一步应用于更复杂流场中的毛细流动分析。
文摘A sweating apparatus has been developed to permit simultaneous measurement for fabric temperature change and relative humidity change at outer still air layer of fabrics. In this paper, we compared the temperature and relative humidity changes for silk fabrics with polyester fabrics and got GM(1,P) relation models respectively between maximum fabric temperature change, maximum relative humidity change at outer still air layer and relative fabric character parameters. Furthermore, by comparing the objective experiments with subjective wear trials, it is found that the amounts of the change rate of fabric temperature and relative humidity at outer still layer are the most important factors which influence clothing comfort in dynamic moisture transfer condition. The more the changes of temperature and R.H., the more the mugginess and the thermal sensation.
文摘A physical-based particle system is employed for cloth modeling supported by two basic algorithms, between which one is the construction of the internal and external forces acting on the particle system in terms of KES-F bending and shearing tests, and the other is the collision algorithm of which the collision detection is carried by means of bi-section of time step and the collision response is handled according to the empirical law for frictionless collision With these algorithms. the geometric state of parcles can be expressed as ordinary differential equationswhich is numerically solved by fourth order Runge- Kutta integration. Different draping figures of cotton fabric and wool fabric prove that such a particle system is suitable for 3D cloth modeling and simulation.
文摘A series of NiMoO_(4)-nano rod/carbon cloth composite electrodes with different loadings(x)of NiMoO_(4)-NRs was synthesized with a view to implementing an efficient hydrogen evolution reaction(HER).The NiMoO_(4) nano-rods(NRs)were prepared by growing them directly on carbon cloth(CC)via a simple hydrothermal reaction coupled with an annealing treatment.The resulting NiMoO_(4)-NR/CC-x composites served directly as electrodes for electrolysis of an alkaline medium and a simulated sea water.The results indicated that among the NiMoO_(4)-NR/CC-x composites,the NiMoO_(4)-NR/CC-10 composite possessed the highest HER activity with an overpotential of 244.8 mV at 10 mA/cm^(2),a Tafel slope of 95 mV/dec,the fastest charge transfer rate(R_(ct)<1Ω)and good stability in alkaline media.Even in simulated seawater,the NiMoO_(4)-NR/CC-10 composite showed good stability.The outstanding HER activity and stability may originate from the strong interaction between Ni and Mo in the NiMoO_(4) NRs as well as the efficient charge transfer process and the rate of the HER due to the synergistic effect involving the CC and NiMoO_(4) NRs.
文摘In order to better verify the regulation effect of various methods of composite refrigeration shielding clothing on the surface temperature of human body in different working environments, it is necessary to make a reasonable evaluation of refrigeration devices and sensitive areas of human body. The body temperature of five normal men was measured, and the changes of body surface temperature under different environmental conditions were investigated. It was concluded that chest, back and forehead were the areas with the highest body temperature, and the mathematical model of refrigeration system with "people-cooling shielding clothing-exterior" as the core was established. The cooling effect of shielding clothing under various environmental conditions was studied and simulated. It is found that the introduction of phase change agent or electric fan in the shield near the chest and back can effectively reduce the body temperature and improve the comfort of the body.