Free torsion of thin-walled structures of open- and closed-sections is a classical elastic mechanics problem, which, in literature, is often solved by the method of membrane analogy. The method of membrane analogy, ho...Free torsion of thin-walled structures of open- and closed-sections is a classical elastic mechanics problem, which, in literature, is often solved by the method of membrane analogy. The method of membrane analogy, however, can be only applied to structures of a single material. If the structure consists of both open- and closed-sections, the method of membrane analogy is difficult to be applied. In this paper, a new method is presented for solving the free torsion of thin-walled structures of open- and/or closed- sections with multiple materials. By utilizing a simple statically indeterminate concept, torsional equations are derived based on the equilibrium and compatibility conditions. The method presented here not only is very simple and easy to understand but also can be applied to thin-walled structures of combined open- and closed-sections with multiple materials.展开更多
Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to ...Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to a laminated composite construction of the circumferentially asymmetric stiffness (CAS) that produces bending-twist coupling. The vibration characteristics of composite beam are determined by the Extended Galerkin Method. The unsteady aerodynamic loads and centrifugal force are integrated with the classical aerodynamic model to deal with aeroelastic stability analysis. The influence of some related factors, ply angle, rotating velocity, and wind speed, is investigated. The paper gives methods of eigenvalue analysis and aeroelastic response, and gives the approaches to restrain classical flutter.展开更多
文摘Free torsion of thin-walled structures of open- and closed-sections is a classical elastic mechanics problem, which, in literature, is often solved by the method of membrane analogy. The method of membrane analogy, however, can be only applied to structures of a single material. If the structure consists of both open- and closed-sections, the method of membrane analogy is difficult to be applied. In this paper, a new method is presented for solving the free torsion of thin-walled structures of open- and/or closed- sections with multiple materials. By utilizing a simple statically indeterminate concept, torsional equations are derived based on the equilibrium and compatibility conditions. The method presented here not only is very simple and easy to understand but also can be applied to thin-walled structures of combined open- and closed-sections with multiple materials.
基金supported by the National Natural Science Foundations of China (Grant No. 10972124)Science & Technology Project of Shandong Provincial Education Department of China (Grant No. J08LB04)+1 种基金Research Project of ‘SUST Spring Bud’ (2009AZZ020)Qunxing Project of SUST (qx101002)
文摘Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to a laminated composite construction of the circumferentially asymmetric stiffness (CAS) that produces bending-twist coupling. The vibration characteristics of composite beam are determined by the Extended Galerkin Method. The unsteady aerodynamic loads and centrifugal force are integrated with the classical aerodynamic model to deal with aeroelastic stability analysis. The influence of some related factors, ply angle, rotating velocity, and wind speed, is investigated. The paper gives methods of eigenvalue analysis and aeroelastic response, and gives the approaches to restrain classical flutter.